Description: An onto function has unique domain and range. (Contributed by NM, 5-Nov-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fodmrnu | |- ( ( F : A -onto-> B /\ F : C -onto-> D ) -> ( A = C /\ B = D ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fofn | |- ( F : A -onto-> B -> F Fn A ) | |
| 2 | fofn | |- ( F : C -onto-> D -> F Fn C ) | |
| 3 | fndmu | |- ( ( F Fn A /\ F Fn C ) -> A = C ) | |
| 4 | 1 2 3 | syl2an | |- ( ( F : A -onto-> B /\ F : C -onto-> D ) -> A = C ) | 
| 5 | forn | |- ( F : A -onto-> B -> ran F = B ) | |
| 6 | forn | |- ( F : C -onto-> D -> ran F = D ) | |
| 7 | 5 6 | sylan9req | |- ( ( F : A -onto-> B /\ F : C -onto-> D ) -> B = D ) | 
| 8 | 4 7 | jca | |- ( ( F : A -onto-> B /\ F : C -onto-> D ) -> ( A = C /\ B = D ) ) |