| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprod0diag.1 |  |-  ( ( ph /\ ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) ) -> A e. CC ) | 
						
							| 2 |  | fzfid |  |-  ( ph -> ( 0 ... N ) e. Fin ) | 
						
							| 3 |  | fzfid |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( 0 ... ( N - j ) ) e. Fin ) | 
						
							| 4 |  | fsum0diaglem |  |-  ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> ( k e. ( 0 ... N ) /\ j e. ( 0 ... ( N - k ) ) ) ) | 
						
							| 5 |  | fsum0diaglem |  |-  ( ( k e. ( 0 ... N ) /\ j e. ( 0 ... ( N - k ) ) ) -> ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) ) | 
						
							| 6 | 4 5 | impbii |  |-  ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) <-> ( k e. ( 0 ... N ) /\ j e. ( 0 ... ( N - k ) ) ) ) | 
						
							| 7 | 6 | a1i |  |-  ( ph -> ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) <-> ( k e. ( 0 ... N ) /\ j e. ( 0 ... ( N - k ) ) ) ) ) | 
						
							| 8 | 2 2 3 7 1 | fprodcom2 |  |-  ( ph -> prod_ j e. ( 0 ... N ) prod_ k e. ( 0 ... ( N - j ) ) A = prod_ k e. ( 0 ... N ) prod_ j e. ( 0 ... ( N - k ) ) A ) |