Metamath Proof Explorer


Theorem fprodaddrecnncnv

Description: The sequence S of finite products, where every factor is added an "always smaller" amount, converges to the finite product of the factors. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses fprodaddrecnncnv.1
|- F/ k ph
fprodaddrecnncnv.2
|- ( ph -> X e. Fin )
fprodaddrecnncnv.3
|- ( ( ph /\ k e. X ) -> A e. CC )
fprodaddrecnncnv.4
|- S = ( n e. NN |-> prod_ k e. X ( A + ( 1 / n ) ) )
Assertion fprodaddrecnncnv
|- ( ph -> S ~~> prod_ k e. X A )

Proof

Step Hyp Ref Expression
1 fprodaddrecnncnv.1
 |-  F/ k ph
2 fprodaddrecnncnv.2
 |-  ( ph -> X e. Fin )
3 fprodaddrecnncnv.3
 |-  ( ( ph /\ k e. X ) -> A e. CC )
4 fprodaddrecnncnv.4
 |-  S = ( n e. NN |-> prod_ k e. X ( A + ( 1 / n ) ) )
5 eqid
 |-  ( x e. CC |-> prod_ k e. X ( A + x ) ) = ( x e. CC |-> prod_ k e. X ( A + x ) )
6 oveq2
 |-  ( m = n -> ( 1 / m ) = ( 1 / n ) )
7 6 cbvmptv
 |-  ( m e. NN |-> ( 1 / m ) ) = ( n e. NN |-> ( 1 / n ) )
8 1 2 3 4 5 7 fprodaddrecnncnvlem
 |-  ( ph -> S ~~> prod_ k e. X A )