| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodeq0g.kph |
|- F/ k ph |
| 2 |
|
fprodeq0g.a |
|- ( ph -> A e. Fin ) |
| 3 |
|
fprodeq0g.b |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
| 4 |
|
fprodeq0g.c |
|- ( ph -> C e. A ) |
| 5 |
|
fprodeq0g.b0 |
|- ( ( ph /\ k = C ) -> B = 0 ) |
| 6 |
|
nfcvd |
|- ( ph -> F/_ k 0 ) |
| 7 |
1 6 2 3 4 5
|
fprodsplit1f |
|- ( ph -> prod_ k e. A B = ( 0 x. prod_ k e. ( A \ { C } ) B ) ) |
| 8 |
|
diffi |
|- ( A e. Fin -> ( A \ { C } ) e. Fin ) |
| 9 |
2 8
|
syl |
|- ( ph -> ( A \ { C } ) e. Fin ) |
| 10 |
|
eldifi |
|- ( k e. ( A \ { C } ) -> k e. A ) |
| 11 |
10 3
|
sylan2 |
|- ( ( ph /\ k e. ( A \ { C } ) ) -> B e. CC ) |
| 12 |
1 9 11
|
fprodclf |
|- ( ph -> prod_ k e. ( A \ { C } ) B e. CC ) |
| 13 |
12
|
mul02d |
|- ( ph -> ( 0 x. prod_ k e. ( A \ { C } ) B ) = 0 ) |
| 14 |
7 13
|
eqtrd |
|- ( ph -> prod_ k e. A B = 0 ) |