Metamath Proof Explorer


Theorem fprodeq0g

Description: Any finite product containing a zero term is itself zero. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fprodeq0g.kph 𝑘 𝜑
fprodeq0g.a ( 𝜑𝐴 ∈ Fin )
fprodeq0g.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
fprodeq0g.c ( 𝜑𝐶𝐴 )
fprodeq0g.b0 ( ( 𝜑𝑘 = 𝐶 ) → 𝐵 = 0 )
Assertion fprodeq0g ( 𝜑 → ∏ 𝑘𝐴 𝐵 = 0 )

Proof

Step Hyp Ref Expression
1 fprodeq0g.kph 𝑘 𝜑
2 fprodeq0g.a ( 𝜑𝐴 ∈ Fin )
3 fprodeq0g.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
4 fprodeq0g.c ( 𝜑𝐶𝐴 )
5 fprodeq0g.b0 ( ( 𝜑𝑘 = 𝐶 ) → 𝐵 = 0 )
6 nfcvd ( 𝜑 𝑘 0 )
7 1 6 2 3 4 5 fprodsplit1f ( 𝜑 → ∏ 𝑘𝐴 𝐵 = ( 0 · ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) 𝐵 ) )
8 diffi ( 𝐴 ∈ Fin → ( 𝐴 ∖ { 𝐶 } ) ∈ Fin )
9 2 8 syl ( 𝜑 → ( 𝐴 ∖ { 𝐶 } ) ∈ Fin )
10 eldifi ( 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) → 𝑘𝐴 )
11 10 3 sylan2 ( ( 𝜑𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) ) → 𝐵 ∈ ℂ )
12 1 9 11 fprodclf ( 𝜑 → ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) 𝐵 ∈ ℂ )
13 12 mul02d ( 𝜑 → ( 0 · ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) 𝐵 ) = 0 )
14 7 13 eqtrd ( 𝜑 → ∏ 𝑘𝐴 𝐵 = 0 )