| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodge1.ph |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
fprodge1.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 3 |
|
fprodge1.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 4 |
|
fprodge1.ge |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 1 ≤ 𝐵 ) |
| 5 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 6 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 7 |
|
1re |
⊢ 1 ∈ ℝ |
| 8 |
|
icossre |
⊢ ( ( 1 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 1 [,) +∞ ) ⊆ ℝ ) |
| 9 |
7 6 8
|
mp2an |
⊢ ( 1 [,) +∞ ) ⊆ ℝ |
| 10 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 11 |
9 10
|
sstri |
⊢ ( 1 [,) +∞ ) ⊆ ℂ |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → ( 1 [,) +∞ ) ⊆ ℂ ) |
| 13 |
5
|
a1i |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 1 ∈ ℝ* ) |
| 14 |
6
|
a1i |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → +∞ ∈ ℝ* ) |
| 15 |
9
|
sseli |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → 𝑥 ∈ ℝ ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 𝑥 ∈ ℝ ) |
| 17 |
9
|
sseli |
⊢ ( 𝑦 ∈ ( 1 [,) +∞ ) → 𝑦 ∈ ℝ ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 𝑦 ∈ ℝ ) |
| 19 |
16 18
|
remulcld |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) |
| 20 |
19
|
rexrd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ* ) |
| 21 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
| 22 |
7
|
a1i |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 1 ∈ ℝ ) |
| 23 |
|
0le1 |
⊢ 0 ≤ 1 |
| 24 |
23
|
a1i |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 0 ≤ 1 ) |
| 25 |
|
icogelb |
⊢ ( ( 1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → 1 ≤ 𝑥 ) |
| 26 |
5 6 25
|
mp3an12 |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → 1 ≤ 𝑥 ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 1 ≤ 𝑥 ) |
| 28 |
|
icogelb |
⊢ ( ( 1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 1 ≤ 𝑦 ) |
| 29 |
5 6 28
|
mp3an12 |
⊢ ( 𝑦 ∈ ( 1 [,) +∞ ) → 1 ≤ 𝑦 ) |
| 30 |
29
|
adantl |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 1 ≤ 𝑦 ) |
| 31 |
22 16 22 18 24 24 27 30
|
lemul12ad |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → ( 1 · 1 ) ≤ ( 𝑥 · 𝑦 ) ) |
| 32 |
21 31
|
eqbrtrrid |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 1 ≤ ( 𝑥 · 𝑦 ) ) |
| 33 |
19
|
ltpnfd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → ( 𝑥 · 𝑦 ) < +∞ ) |
| 34 |
13 14 20 32 33
|
elicod |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → ( 𝑥 · 𝑦 ) ∈ ( 1 [,) +∞ ) ) |
| 35 |
34
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) ) → ( 𝑥 · 𝑦 ) ∈ ( 1 [,) +∞ ) ) |
| 36 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 1 ∈ ℝ* ) |
| 37 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → +∞ ∈ ℝ* ) |
| 38 |
3
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) |
| 39 |
3
|
ltpnfd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 < +∞ ) |
| 40 |
36 37 38 4 39
|
elicod |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 1 [,) +∞ ) ) |
| 41 |
|
1le1 |
⊢ 1 ≤ 1 |
| 42 |
|
ltpnf |
⊢ ( 1 ∈ ℝ → 1 < +∞ ) |
| 43 |
7 42
|
ax-mp |
⊢ 1 < +∞ |
| 44 |
|
elico2 |
⊢ ( ( 1 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 1 ∈ ( 1 [,) +∞ ) ↔ ( 1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 < +∞ ) ) ) |
| 45 |
7 6 44
|
mp2an |
⊢ ( 1 ∈ ( 1 [,) +∞ ) ↔ ( 1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 < +∞ ) ) |
| 46 |
7 41 43 45
|
mpbir3an |
⊢ 1 ∈ ( 1 [,) +∞ ) |
| 47 |
46
|
a1i |
⊢ ( 𝜑 → 1 ∈ ( 1 [,) +∞ ) ) |
| 48 |
1 12 35 2 40 47
|
fprodcllemf |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ( 1 [,) +∞ ) ) |
| 49 |
|
icogelb |
⊢ ( ( 1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ( 1 [,) +∞ ) ) → 1 ≤ ∏ 𝑘 ∈ 𝐴 𝐵 ) |
| 50 |
5 6 48 49
|
mp3an12i |
⊢ ( 𝜑 → 1 ≤ ∏ 𝑘 ∈ 𝐴 𝐵 ) |