Metamath Proof Explorer


Theorem elicod

Description: Membership in a left-closed right-open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses elicod.a ( 𝜑𝐴 ∈ ℝ* )
elicod.b ( 𝜑𝐵 ∈ ℝ* )
elicod.3 ( 𝜑𝐶 ∈ ℝ* )
elicod.4 ( 𝜑𝐴𝐶 )
elicod.5 ( 𝜑𝐶 < 𝐵 )
Assertion elicod ( 𝜑𝐶 ∈ ( 𝐴 [,) 𝐵 ) )

Proof

Step Hyp Ref Expression
1 elicod.a ( 𝜑𝐴 ∈ ℝ* )
2 elicod.b ( 𝜑𝐵 ∈ ℝ* )
3 elicod.3 ( 𝜑𝐶 ∈ ℝ* )
4 elicod.4 ( 𝜑𝐴𝐶 )
5 elicod.5 ( 𝜑𝐶 < 𝐵 )
6 elico1 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( 𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵 ) ) )
7 1 2 6 syl2anc ( 𝜑 → ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( 𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵 ) ) )
8 3 4 5 7 mpbir3and ( 𝜑𝐶 ∈ ( 𝐴 [,) 𝐵 ) )