Description: Membership in a left-closed right-open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elicod.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
elicod.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | ||
elicod.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | ||
elicod.4 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) | ||
elicod.5 | ⊢ ( 𝜑 → 𝐶 < 𝐵 ) | ||
Assertion | elicod | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicod.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
2 | elicod.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | |
3 | elicod.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | |
4 | elicod.4 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) | |
5 | elicod.5 | ⊢ ( 𝜑 → 𝐶 < 𝐵 ) | |
6 | elico1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) ) | |
7 | 1 2 6 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
8 | 3 4 5 7 | mpbir3and | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) |