Metamath Proof Explorer


Theorem fprodge1

Description: If all of the terms of a finite product are greater than or equal to 1 , so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fprodge1.ph kφ
fprodge1.a φAFin
fprodge1.b φkAB
fprodge1.ge φkA1B
Assertion fprodge1 φ1kAB

Proof

Step Hyp Ref Expression
1 fprodge1.ph kφ
2 fprodge1.a φAFin
3 fprodge1.b φkAB
4 fprodge1.ge φkA1B
5 1xr 1*
6 pnfxr +∞*
7 1re 1
8 icossre 1+∞*1+∞
9 7 6 8 mp2an 1+∞
10 ax-resscn
11 9 10 sstri 1+∞
12 11 a1i φ1+∞
13 5 a1i x1+∞y1+∞1*
14 6 a1i x1+∞y1+∞+∞*
15 9 sseli x1+∞x
16 15 adantr x1+∞y1+∞x
17 9 sseli y1+∞y
18 17 adantl x1+∞y1+∞y
19 16 18 remulcld x1+∞y1+∞xy
20 19 rexrd x1+∞y1+∞xy*
21 1t1e1 11=1
22 7 a1i x1+∞y1+∞1
23 0le1 01
24 23 a1i x1+∞y1+∞01
25 icogelb 1*+∞*x1+∞1x
26 5 6 25 mp3an12 x1+∞1x
27 26 adantr x1+∞y1+∞1x
28 icogelb 1*+∞*y1+∞1y
29 5 6 28 mp3an12 y1+∞1y
30 29 adantl x1+∞y1+∞1y
31 22 16 22 18 24 24 27 30 lemul12ad x1+∞y1+∞11xy
32 21 31 eqbrtrrid x1+∞y1+∞1xy
33 19 ltpnfd x1+∞y1+∞xy<+∞
34 13 14 20 32 33 elicod x1+∞y1+∞xy1+∞
35 34 adantl φx1+∞y1+∞xy1+∞
36 5 a1i φkA1*
37 6 a1i φkA+∞*
38 3 rexrd φkAB*
39 3 ltpnfd φkAB<+∞
40 36 37 38 4 39 elicod φkAB1+∞
41 1le1 11
42 ltpnf 11<+∞
43 7 42 ax-mp 1<+∞
44 elico2 1+∞*11+∞1111<+∞
45 7 6 44 mp2an 11+∞1111<+∞
46 7 41 43 45 mpbir3an 11+∞
47 46 a1i φ11+∞
48 1 12 35 2 40 47 fprodcllemf φkAB1+∞
49 icogelb 1*+∞*kAB1+∞1kAB
50 5 6 48 49 mp3an12i φ1kAB