Metamath Proof Explorer


Theorem ltpnfd

Description: Any (finite) real is less than plus infinity. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis ltpnfd.a φA
Assertion ltpnfd φA<+∞

Proof

Step Hyp Ref Expression
1 ltpnfd.a φA
2 ltpnf AA<+∞
3 1 2 syl φA<+∞