Metamath Proof Explorer


Theorem icogelb

Description: An element of a left-closed right-open interval is greater than or equal to its lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion icogelb A*B*CABAC

Proof

Step Hyp Ref Expression
1 elico1 A*B*CABC*ACC<B
2 simp2 C*ACC<BAC
3 1 2 syl6bi A*B*CABAC
4 3 3impia A*B*CABAC