Metamath Proof Explorer


Theorem elicore

Description: A member of a left-closed right-open interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion elicore A C A B C

Proof

Step Hyp Ref Expression
1 df-ico . = x * , y * z * | x z z < y
2 1 elixx3g C A B A * B * C * A C C < B
3 2 biimpi C A B A * B * C * A C C < B
4 3 simpld C A B A * B * C *
5 4 simp3d C A B C *
6 5 adantl A C A B C *
7 simpl A C A B A
8 3 simprd C A B A C C < B
9 8 simpld C A B A C
10 9 adantl A C A B A C
11 4 simp2d C A B B *
12 11 adantl A C A B B *
13 pnfxr +∞ *
14 13 a1i A C A B +∞ *
15 8 simprd C A B C < B
16 15 adantl A C A B C < B
17 pnfge B * B +∞
18 11 17 syl C A B B +∞
19 18 adantl A C A B B +∞
20 6 12 14 16 19 xrltletrd A C A B C < +∞
21 xrre3 C * A A C C < +∞ C
22 6 7 10 20 21 syl22anc A C A B C