Metamath Proof Explorer


Theorem ubioc1

Description: The upper bound belongs to an open-below, closed-above interval. See ubicc2 . (Contributed by FL, 29-May-2014)

Ref Expression
Assertion ubioc1 A * B * A < B B A B

Proof

Step Hyp Ref Expression
1 simp2 A * B * A < B B *
2 simp3 A * B * A < B A < B
3 xrleid B * B B
4 3 3ad2ant2 A * B * A < B B B
5 elioc1 A * B * B A B B * A < B B B
6 5 3adant3 A * B * A < B B A B B * A < B B B
7 1 2 4 6 mpbir3and A * B * A < B B A B