Metamath Proof Explorer


Theorem ubioc1

Description: The upper bound belongs to an open-below, closed-above interval. See ubicc2 . (Contributed by FL, 29-May-2014)

Ref Expression
Assertion ubioc1
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> B e. ( A (,] B ) )

Proof

Step Hyp Ref Expression
1 simp2
 |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> B e. RR* )
2 simp3
 |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> A < B )
3 xrleid
 |-  ( B e. RR* -> B <_ B )
4 3 3ad2ant2
 |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> B <_ B )
5 elioc1
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( B e. ( A (,] B ) <-> ( B e. RR* /\ A < B /\ B <_ B ) ) )
6 5 3adant3
 |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( B e. ( A (,] B ) <-> ( B e. RR* /\ A < B /\ B <_ B ) ) )
7 1 2 4 6 mpbir3and
 |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> B e. ( A (,] B ) )