| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ico |
|- [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) |
| 2 |
1
|
elixx3g |
|- ( C e. ( A [,) B ) <-> ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ C /\ C < B ) ) ) |
| 3 |
2
|
biimpi |
|- ( C e. ( A [,) B ) -> ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ C /\ C < B ) ) ) |
| 4 |
3
|
simpld |
|- ( C e. ( A [,) B ) -> ( A e. RR* /\ B e. RR* /\ C e. RR* ) ) |
| 5 |
4
|
simp3d |
|- ( C e. ( A [,) B ) -> C e. RR* ) |
| 6 |
5
|
adantl |
|- ( ( A e. RR /\ C e. ( A [,) B ) ) -> C e. RR* ) |
| 7 |
|
simpl |
|- ( ( A e. RR /\ C e. ( A [,) B ) ) -> A e. RR ) |
| 8 |
3
|
simprd |
|- ( C e. ( A [,) B ) -> ( A <_ C /\ C < B ) ) |
| 9 |
8
|
simpld |
|- ( C e. ( A [,) B ) -> A <_ C ) |
| 10 |
9
|
adantl |
|- ( ( A e. RR /\ C e. ( A [,) B ) ) -> A <_ C ) |
| 11 |
4
|
simp2d |
|- ( C e. ( A [,) B ) -> B e. RR* ) |
| 12 |
11
|
adantl |
|- ( ( A e. RR /\ C e. ( A [,) B ) ) -> B e. RR* ) |
| 13 |
|
pnfxr |
|- +oo e. RR* |
| 14 |
13
|
a1i |
|- ( ( A e. RR /\ C e. ( A [,) B ) ) -> +oo e. RR* ) |
| 15 |
8
|
simprd |
|- ( C e. ( A [,) B ) -> C < B ) |
| 16 |
15
|
adantl |
|- ( ( A e. RR /\ C e. ( A [,) B ) ) -> C < B ) |
| 17 |
|
pnfge |
|- ( B e. RR* -> B <_ +oo ) |
| 18 |
11 17
|
syl |
|- ( C e. ( A [,) B ) -> B <_ +oo ) |
| 19 |
18
|
adantl |
|- ( ( A e. RR /\ C e. ( A [,) B ) ) -> B <_ +oo ) |
| 20 |
6 12 14 16 19
|
xrltletrd |
|- ( ( A e. RR /\ C e. ( A [,) B ) ) -> C < +oo ) |
| 21 |
|
xrre3 |
|- ( ( ( C e. RR* /\ A e. RR ) /\ ( A <_ C /\ C < +oo ) ) -> C e. RR ) |
| 22 |
6 7 10 20 21
|
syl22anc |
|- ( ( A e. RR /\ C e. ( A [,) B ) ) -> C e. RR ) |