Metamath Proof Explorer


Definition df-ico

Description: Define the set of closed-below, open-above intervals of extended reals. (Contributed by NM, 24-Dec-2006)

Ref Expression
Assertion df-ico
|- [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cico
 |-  [,)
1 vx
 |-  x
2 cxr
 |-  RR*
3 vy
 |-  y
4 vz
 |-  z
5 1 cv
 |-  x
6 cle
 |-  <_
7 4 cv
 |-  z
8 5 7 6 wbr
 |-  x <_ z
9 clt
 |-  <
10 3 cv
 |-  y
11 7 10 9 wbr
 |-  z < y
12 8 11 wa
 |-  ( x <_ z /\ z < y )
13 12 4 2 crab
 |-  { z e. RR* | ( x <_ z /\ z < y ) }
14 1 3 2 2 13 cmpo
 |-  ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } )
15 0 14 wceq
 |-  [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } )