Metamath Proof Explorer


Theorem elicore

Description: A member of a left-closed right-open interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion elicore ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐶 ∈ ℝ )

Proof

Step Hyp Ref Expression
1 df-ico [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } )
2 1 elixx3g ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) ∧ ( 𝐴𝐶𝐶 < 𝐵 ) ) )
3 2 biimpi ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) ∧ ( 𝐴𝐶𝐶 < 𝐵 ) ) )
4 3 simpld ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) )
5 4 simp3d ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → 𝐶 ∈ ℝ* )
6 5 adantl ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐶 ∈ ℝ* )
7 simpl ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐴 ∈ ℝ )
8 3 simprd ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → ( 𝐴𝐶𝐶 < 𝐵 ) )
9 8 simpld ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → 𝐴𝐶 )
10 9 adantl ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐴𝐶 )
11 4 simp2d ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → 𝐵 ∈ ℝ* )
12 11 adantl ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐵 ∈ ℝ* )
13 pnfxr +∞ ∈ ℝ*
14 13 a1i ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → +∞ ∈ ℝ* )
15 8 simprd ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → 𝐶 < 𝐵 )
16 15 adantl ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐶 < 𝐵 )
17 pnfge ( 𝐵 ∈ ℝ*𝐵 ≤ +∞ )
18 11 17 syl ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → 𝐵 ≤ +∞ )
19 18 adantl ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐵 ≤ +∞ )
20 6 12 14 16 19 xrltletrd ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐶 < +∞ )
21 xrre3 ( ( ( 𝐶 ∈ ℝ*𝐴 ∈ ℝ ) ∧ ( 𝐴𝐶𝐶 < +∞ ) ) → 𝐶 ∈ ℝ )
22 6 7 10 20 21 syl22anc ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐶 ∈ ℝ )