Step |
Hyp |
Ref |
Expression |
1 |
|
df-ico |
⊢ [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
2 |
1
|
elixx3g |
⊢ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
3 |
2
|
biimpi |
⊢ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
4 |
3
|
simpld |
⊢ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ) |
5 |
4
|
simp3d |
⊢ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → 𝐶 ∈ ℝ* ) |
6 |
5
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐶 ∈ ℝ* ) |
7 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐴 ∈ ℝ ) |
8 |
3
|
simprd |
⊢ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) |
9 |
8
|
simpld |
⊢ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → 𝐴 ≤ 𝐶 ) |
10 |
9
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐴 ≤ 𝐶 ) |
11 |
4
|
simp2d |
⊢ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → 𝐵 ∈ ℝ* ) |
12 |
11
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
13 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
14 |
13
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → +∞ ∈ ℝ* ) |
15 |
8
|
simprd |
⊢ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → 𝐶 < 𝐵 ) |
16 |
15
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐶 < 𝐵 ) |
17 |
|
pnfge |
⊢ ( 𝐵 ∈ ℝ* → 𝐵 ≤ +∞ ) |
18 |
11 17
|
syl |
⊢ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → 𝐵 ≤ +∞ ) |
19 |
18
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐵 ≤ +∞ ) |
20 |
6 12 14 16 19
|
xrltletrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐶 < +∞ ) |
21 |
|
xrre3 |
⊢ ( ( ( 𝐶 ∈ ℝ* ∧ 𝐴 ∈ ℝ ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 < +∞ ) ) → 𝐶 ∈ ℝ ) |
22 |
6 7 10 20 21
|
syl22anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐶 ∈ ℝ ) |