Step |
Hyp |
Ref |
Expression |
1 |
|
mnflt |
|- ( B e. RR -> -oo < B ) |
2 |
1
|
adantl |
|- ( ( A e. RR* /\ B e. RR ) -> -oo < B ) |
3 |
|
mnfxr |
|- -oo e. RR* |
4 |
|
rexr |
|- ( B e. RR -> B e. RR* ) |
5 |
4
|
adantl |
|- ( ( A e. RR* /\ B e. RR ) -> B e. RR* ) |
6 |
|
simpl |
|- ( ( A e. RR* /\ B e. RR ) -> A e. RR* ) |
7 |
|
xrltletr |
|- ( ( -oo e. RR* /\ B e. RR* /\ A e. RR* ) -> ( ( -oo < B /\ B <_ A ) -> -oo < A ) ) |
8 |
3 5 6 7
|
mp3an2i |
|- ( ( A e. RR* /\ B e. RR ) -> ( ( -oo < B /\ B <_ A ) -> -oo < A ) ) |
9 |
2 8
|
mpand |
|- ( ( A e. RR* /\ B e. RR ) -> ( B <_ A -> -oo < A ) ) |
10 |
9
|
imp |
|- ( ( ( A e. RR* /\ B e. RR ) /\ B <_ A ) -> -oo < A ) |
11 |
10
|
adantrr |
|- ( ( ( A e. RR* /\ B e. RR ) /\ ( B <_ A /\ A < +oo ) ) -> -oo < A ) |
12 |
|
simprr |
|- ( ( ( A e. RR* /\ B e. RR ) /\ ( B <_ A /\ A < +oo ) ) -> A < +oo ) |
13 |
|
xrrebnd |
|- ( A e. RR* -> ( A e. RR <-> ( -oo < A /\ A < +oo ) ) ) |
14 |
13
|
ad2antrr |
|- ( ( ( A e. RR* /\ B e. RR ) /\ ( B <_ A /\ A < +oo ) ) -> ( A e. RR <-> ( -oo < A /\ A < +oo ) ) ) |
15 |
11 12 14
|
mpbir2and |
|- ( ( ( A e. RR* /\ B e. RR ) /\ ( B <_ A /\ A < +oo ) ) -> A e. RR ) |