Metamath Proof Explorer


Theorem xrre3

Description: A way of proving that an extended real is real. (Contributed by FL, 29-May-2014)

Ref Expression
Assertion xrre3
|- ( ( ( A e. RR* /\ B e. RR ) /\ ( B <_ A /\ A < +oo ) ) -> A e. RR )

Proof

Step Hyp Ref Expression
1 mnflt
 |-  ( B e. RR -> -oo < B )
2 1 adantl
 |-  ( ( A e. RR* /\ B e. RR ) -> -oo < B )
3 mnfxr
 |-  -oo e. RR*
4 rexr
 |-  ( B e. RR -> B e. RR* )
5 4 adantl
 |-  ( ( A e. RR* /\ B e. RR ) -> B e. RR* )
6 simpl
 |-  ( ( A e. RR* /\ B e. RR ) -> A e. RR* )
7 xrltletr
 |-  ( ( -oo e. RR* /\ B e. RR* /\ A e. RR* ) -> ( ( -oo < B /\ B <_ A ) -> -oo < A ) )
8 3 5 6 7 mp3an2i
 |-  ( ( A e. RR* /\ B e. RR ) -> ( ( -oo < B /\ B <_ A ) -> -oo < A ) )
9 2 8 mpand
 |-  ( ( A e. RR* /\ B e. RR ) -> ( B <_ A -> -oo < A ) )
10 9 imp
 |-  ( ( ( A e. RR* /\ B e. RR ) /\ B <_ A ) -> -oo < A )
11 10 adantrr
 |-  ( ( ( A e. RR* /\ B e. RR ) /\ ( B <_ A /\ A < +oo ) ) -> -oo < A )
12 simprr
 |-  ( ( ( A e. RR* /\ B e. RR ) /\ ( B <_ A /\ A < +oo ) ) -> A < +oo )
13 xrrebnd
 |-  ( A e. RR* -> ( A e. RR <-> ( -oo < A /\ A < +oo ) ) )
14 13 ad2antrr
 |-  ( ( ( A e. RR* /\ B e. RR ) /\ ( B <_ A /\ A < +oo ) ) -> ( A e. RR <-> ( -oo < A /\ A < +oo ) ) )
15 11 12 14 mpbir2and
 |-  ( ( ( A e. RR* /\ B e. RR ) /\ ( B <_ A /\ A < +oo ) ) -> A e. RR )