| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodle.kph |
|
| 2 |
|
fprodle.a |
|
| 3 |
|
fprodle.b |
|
| 4 |
|
fprodle.0l3b |
|
| 5 |
|
fprodle.c |
|
| 6 |
|
fprodle.blec |
|
| 7 |
|
1red |
|
| 8 |
|
nfra1 |
|
| 9 |
1 8
|
nfan |
|
| 10 |
2
|
adantr |
|
| 11 |
5
|
adantlr |
|
| 12 |
3
|
adantlr |
|
| 13 |
|
rspa |
|
| 14 |
13
|
adantll |
|
| 15 |
11 12 14
|
redivcld |
|
| 16 |
9 10 15
|
fprodreclf |
|
| 17 |
1 2 3
|
fprodreclf |
|
| 18 |
17
|
adantr |
|
| 19 |
1 2 3 4
|
fprodge0 |
|
| 20 |
19
|
adantr |
|
| 21 |
4
|
adantlr |
|
| 22 |
12 21 14
|
ne0gt0d |
|
| 23 |
12 22
|
elrpd |
|
| 24 |
6
|
adantlr |
|
| 25 |
|
divge1 |
|
| 26 |
23 11 24 25
|
syl3anc |
|
| 27 |
9 10 15 26
|
fprodge1 |
|
| 28 |
7 16 18 20 27
|
lemul2ad |
|
| 29 |
3
|
recnd |
|
| 30 |
1 2 29
|
fprodclf |
|
| 31 |
30
|
mulridd |
|
| 32 |
31
|
adantr |
|
| 33 |
5
|
recnd |
|
| 34 |
33
|
adantlr |
|
| 35 |
29
|
adantlr |
|
| 36 |
9 10 34 35 14
|
fproddivf |
|
| 37 |
36
|
oveq2d |
|
| 38 |
1 2 33
|
fprodclf |
|
| 39 |
38
|
adantr |
|
| 40 |
30
|
adantr |
|
| 41 |
9 10 35 14
|
fprodn0f |
|
| 42 |
39 40 41
|
divcan2d |
|
| 43 |
37 42
|
eqtrd |
|
| 44 |
28 32 43
|
3brtr3d |
|
| 45 |
|
nne |
|
| 46 |
45
|
rexbii |
|
| 47 |
|
rexnal |
|
| 48 |
|
nfv |
|
| 49 |
|
nfcsb1v |
|
| 50 |
49
|
nfeq1 |
|
| 51 |
|
csbeq1a |
|
| 52 |
51
|
eqeq1d |
|
| 53 |
48 50 52
|
cbvrexw |
|
| 54 |
46 47 53
|
3bitr3i |
|
| 55 |
|
nfv |
|
| 56 |
1 55 50
|
nf3an |
|
| 57 |
2
|
3ad2ant1 |
|
| 58 |
29
|
3ad2antl1 |
|
| 59 |
|
simp2 |
|
| 60 |
52
|
biimparc |
|
| 61 |
60
|
3ad2antl3 |
|
| 62 |
56 57 58 59 61
|
fprodeq0g |
|
| 63 |
62
|
rexlimdv3a |
|
| 64 |
63
|
imp |
|
| 65 |
|
0red |
|
| 66 |
65 3 5 4 6
|
letrd |
|
| 67 |
1 2 5 66
|
fprodge0 |
|
| 68 |
67
|
adantr |
|
| 69 |
64 68
|
eqbrtrd |
|
| 70 |
54 69
|
sylan2b |
|
| 71 |
44 70
|
pm2.61dan |
|