| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodle.kph |
|- F/ k ph |
| 2 |
|
fprodle.a |
|- ( ph -> A e. Fin ) |
| 3 |
|
fprodle.b |
|- ( ( ph /\ k e. A ) -> B e. RR ) |
| 4 |
|
fprodle.0l3b |
|- ( ( ph /\ k e. A ) -> 0 <_ B ) |
| 5 |
|
fprodle.c |
|- ( ( ph /\ k e. A ) -> C e. RR ) |
| 6 |
|
fprodle.blec |
|- ( ( ph /\ k e. A ) -> B <_ C ) |
| 7 |
|
1red |
|- ( ( ph /\ A. k e. A B =/= 0 ) -> 1 e. RR ) |
| 8 |
|
nfra1 |
|- F/ k A. k e. A B =/= 0 |
| 9 |
1 8
|
nfan |
|- F/ k ( ph /\ A. k e. A B =/= 0 ) |
| 10 |
2
|
adantr |
|- ( ( ph /\ A. k e. A B =/= 0 ) -> A e. Fin ) |
| 11 |
5
|
adantlr |
|- ( ( ( ph /\ A. k e. A B =/= 0 ) /\ k e. A ) -> C e. RR ) |
| 12 |
3
|
adantlr |
|- ( ( ( ph /\ A. k e. A B =/= 0 ) /\ k e. A ) -> B e. RR ) |
| 13 |
|
rspa |
|- ( ( A. k e. A B =/= 0 /\ k e. A ) -> B =/= 0 ) |
| 14 |
13
|
adantll |
|- ( ( ( ph /\ A. k e. A B =/= 0 ) /\ k e. A ) -> B =/= 0 ) |
| 15 |
11 12 14
|
redivcld |
|- ( ( ( ph /\ A. k e. A B =/= 0 ) /\ k e. A ) -> ( C / B ) e. RR ) |
| 16 |
9 10 15
|
fprodreclf |
|- ( ( ph /\ A. k e. A B =/= 0 ) -> prod_ k e. A ( C / B ) e. RR ) |
| 17 |
1 2 3
|
fprodreclf |
|- ( ph -> prod_ k e. A B e. RR ) |
| 18 |
17
|
adantr |
|- ( ( ph /\ A. k e. A B =/= 0 ) -> prod_ k e. A B e. RR ) |
| 19 |
1 2 3 4
|
fprodge0 |
|- ( ph -> 0 <_ prod_ k e. A B ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ A. k e. A B =/= 0 ) -> 0 <_ prod_ k e. A B ) |
| 21 |
4
|
adantlr |
|- ( ( ( ph /\ A. k e. A B =/= 0 ) /\ k e. A ) -> 0 <_ B ) |
| 22 |
12 21 14
|
ne0gt0d |
|- ( ( ( ph /\ A. k e. A B =/= 0 ) /\ k e. A ) -> 0 < B ) |
| 23 |
12 22
|
elrpd |
|- ( ( ( ph /\ A. k e. A B =/= 0 ) /\ k e. A ) -> B e. RR+ ) |
| 24 |
6
|
adantlr |
|- ( ( ( ph /\ A. k e. A B =/= 0 ) /\ k e. A ) -> B <_ C ) |
| 25 |
|
divge1 |
|- ( ( B e. RR+ /\ C e. RR /\ B <_ C ) -> 1 <_ ( C / B ) ) |
| 26 |
23 11 24 25
|
syl3anc |
|- ( ( ( ph /\ A. k e. A B =/= 0 ) /\ k e. A ) -> 1 <_ ( C / B ) ) |
| 27 |
9 10 15 26
|
fprodge1 |
|- ( ( ph /\ A. k e. A B =/= 0 ) -> 1 <_ prod_ k e. A ( C / B ) ) |
| 28 |
7 16 18 20 27
|
lemul2ad |
|- ( ( ph /\ A. k e. A B =/= 0 ) -> ( prod_ k e. A B x. 1 ) <_ ( prod_ k e. A B x. prod_ k e. A ( C / B ) ) ) |
| 29 |
3
|
recnd |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
| 30 |
1 2 29
|
fprodclf |
|- ( ph -> prod_ k e. A B e. CC ) |
| 31 |
30
|
mulridd |
|- ( ph -> ( prod_ k e. A B x. 1 ) = prod_ k e. A B ) |
| 32 |
31
|
adantr |
|- ( ( ph /\ A. k e. A B =/= 0 ) -> ( prod_ k e. A B x. 1 ) = prod_ k e. A B ) |
| 33 |
5
|
recnd |
|- ( ( ph /\ k e. A ) -> C e. CC ) |
| 34 |
33
|
adantlr |
|- ( ( ( ph /\ A. k e. A B =/= 0 ) /\ k e. A ) -> C e. CC ) |
| 35 |
29
|
adantlr |
|- ( ( ( ph /\ A. k e. A B =/= 0 ) /\ k e. A ) -> B e. CC ) |
| 36 |
9 10 34 35 14
|
fproddivf |
|- ( ( ph /\ A. k e. A B =/= 0 ) -> prod_ k e. A ( C / B ) = ( prod_ k e. A C / prod_ k e. A B ) ) |
| 37 |
36
|
oveq2d |
|- ( ( ph /\ A. k e. A B =/= 0 ) -> ( prod_ k e. A B x. prod_ k e. A ( C / B ) ) = ( prod_ k e. A B x. ( prod_ k e. A C / prod_ k e. A B ) ) ) |
| 38 |
1 2 33
|
fprodclf |
|- ( ph -> prod_ k e. A C e. CC ) |
| 39 |
38
|
adantr |
|- ( ( ph /\ A. k e. A B =/= 0 ) -> prod_ k e. A C e. CC ) |
| 40 |
30
|
adantr |
|- ( ( ph /\ A. k e. A B =/= 0 ) -> prod_ k e. A B e. CC ) |
| 41 |
9 10 35 14
|
fprodn0f |
|- ( ( ph /\ A. k e. A B =/= 0 ) -> prod_ k e. A B =/= 0 ) |
| 42 |
39 40 41
|
divcan2d |
|- ( ( ph /\ A. k e. A B =/= 0 ) -> ( prod_ k e. A B x. ( prod_ k e. A C / prod_ k e. A B ) ) = prod_ k e. A C ) |
| 43 |
37 42
|
eqtrd |
|- ( ( ph /\ A. k e. A B =/= 0 ) -> ( prod_ k e. A B x. prod_ k e. A ( C / B ) ) = prod_ k e. A C ) |
| 44 |
28 32 43
|
3brtr3d |
|- ( ( ph /\ A. k e. A B =/= 0 ) -> prod_ k e. A B <_ prod_ k e. A C ) |
| 45 |
|
nne |
|- ( -. B =/= 0 <-> B = 0 ) |
| 46 |
45
|
rexbii |
|- ( E. k e. A -. B =/= 0 <-> E. k e. A B = 0 ) |
| 47 |
|
rexnal |
|- ( E. k e. A -. B =/= 0 <-> -. A. k e. A B =/= 0 ) |
| 48 |
|
nfv |
|- F/ j B = 0 |
| 49 |
|
nfcsb1v |
|- F/_ k [_ j / k ]_ B |
| 50 |
49
|
nfeq1 |
|- F/ k [_ j / k ]_ B = 0 |
| 51 |
|
csbeq1a |
|- ( k = j -> B = [_ j / k ]_ B ) |
| 52 |
51
|
eqeq1d |
|- ( k = j -> ( B = 0 <-> [_ j / k ]_ B = 0 ) ) |
| 53 |
48 50 52
|
cbvrexw |
|- ( E. k e. A B = 0 <-> E. j e. A [_ j / k ]_ B = 0 ) |
| 54 |
46 47 53
|
3bitr3i |
|- ( -. A. k e. A B =/= 0 <-> E. j e. A [_ j / k ]_ B = 0 ) |
| 55 |
|
nfv |
|- F/ k j e. A |
| 56 |
1 55 50
|
nf3an |
|- F/ k ( ph /\ j e. A /\ [_ j / k ]_ B = 0 ) |
| 57 |
2
|
3ad2ant1 |
|- ( ( ph /\ j e. A /\ [_ j / k ]_ B = 0 ) -> A e. Fin ) |
| 58 |
29
|
3ad2antl1 |
|- ( ( ( ph /\ j e. A /\ [_ j / k ]_ B = 0 ) /\ k e. A ) -> B e. CC ) |
| 59 |
|
simp2 |
|- ( ( ph /\ j e. A /\ [_ j / k ]_ B = 0 ) -> j e. A ) |
| 60 |
52
|
biimparc |
|- ( ( [_ j / k ]_ B = 0 /\ k = j ) -> B = 0 ) |
| 61 |
60
|
3ad2antl3 |
|- ( ( ( ph /\ j e. A /\ [_ j / k ]_ B = 0 ) /\ k = j ) -> B = 0 ) |
| 62 |
56 57 58 59 61
|
fprodeq0g |
|- ( ( ph /\ j e. A /\ [_ j / k ]_ B = 0 ) -> prod_ k e. A B = 0 ) |
| 63 |
62
|
rexlimdv3a |
|- ( ph -> ( E. j e. A [_ j / k ]_ B = 0 -> prod_ k e. A B = 0 ) ) |
| 64 |
63
|
imp |
|- ( ( ph /\ E. j e. A [_ j / k ]_ B = 0 ) -> prod_ k e. A B = 0 ) |
| 65 |
|
0red |
|- ( ( ph /\ k e. A ) -> 0 e. RR ) |
| 66 |
65 3 5 4 6
|
letrd |
|- ( ( ph /\ k e. A ) -> 0 <_ C ) |
| 67 |
1 2 5 66
|
fprodge0 |
|- ( ph -> 0 <_ prod_ k e. A C ) |
| 68 |
67
|
adantr |
|- ( ( ph /\ E. j e. A [_ j / k ]_ B = 0 ) -> 0 <_ prod_ k e. A C ) |
| 69 |
64 68
|
eqbrtrd |
|- ( ( ph /\ E. j e. A [_ j / k ]_ B = 0 ) -> prod_ k e. A B <_ prod_ k e. A C ) |
| 70 |
54 69
|
sylan2b |
|- ( ( ph /\ -. A. k e. A B =/= 0 ) -> prod_ k e. A B <_ prod_ k e. A C ) |
| 71 |
44 70
|
pm2.61dan |
|- ( ph -> prod_ k e. A B <_ prod_ k e. A C ) |