| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodn0f.kph |
|- F/ k ph |
| 2 |
|
fprodn0f.a |
|- ( ph -> A e. Fin ) |
| 3 |
|
fprodn0f.b |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
| 4 |
|
fprodn0f.bne0 |
|- ( ( ph /\ k e. A ) -> B =/= 0 ) |
| 5 |
|
difssd |
|- ( ph -> ( CC \ { 0 } ) C_ CC ) |
| 6 |
|
eldifi |
|- ( x e. ( CC \ { 0 } ) -> x e. CC ) |
| 7 |
6
|
adantr |
|- ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> x e. CC ) |
| 8 |
|
eldifi |
|- ( y e. ( CC \ { 0 } ) -> y e. CC ) |
| 9 |
8
|
adantl |
|- ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> y e. CC ) |
| 10 |
7 9
|
mulcld |
|- ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> ( x x. y ) e. CC ) |
| 11 |
|
eldifsni |
|- ( x e. ( CC \ { 0 } ) -> x =/= 0 ) |
| 12 |
11
|
adantr |
|- ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> x =/= 0 ) |
| 13 |
|
eldifsni |
|- ( y e. ( CC \ { 0 } ) -> y =/= 0 ) |
| 14 |
13
|
adantl |
|- ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> y =/= 0 ) |
| 15 |
7 9 12 14
|
mulne0d |
|- ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> ( x x. y ) =/= 0 ) |
| 16 |
15
|
neneqd |
|- ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> -. ( x x. y ) = 0 ) |
| 17 |
|
ovex |
|- ( x x. y ) e. _V |
| 18 |
17
|
elsn |
|- ( ( x x. y ) e. { 0 } <-> ( x x. y ) = 0 ) |
| 19 |
16 18
|
sylnibr |
|- ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> -. ( x x. y ) e. { 0 } ) |
| 20 |
10 19
|
eldifd |
|- ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> ( x x. y ) e. ( CC \ { 0 } ) ) |
| 21 |
20
|
adantl |
|- ( ( ph /\ ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) ) -> ( x x. y ) e. ( CC \ { 0 } ) ) |
| 22 |
4
|
neneqd |
|- ( ( ph /\ k e. A ) -> -. B = 0 ) |
| 23 |
|
elsng |
|- ( B e. CC -> ( B e. { 0 } <-> B = 0 ) ) |
| 24 |
3 23
|
syl |
|- ( ( ph /\ k e. A ) -> ( B e. { 0 } <-> B = 0 ) ) |
| 25 |
22 24
|
mtbird |
|- ( ( ph /\ k e. A ) -> -. B e. { 0 } ) |
| 26 |
3 25
|
eldifd |
|- ( ( ph /\ k e. A ) -> B e. ( CC \ { 0 } ) ) |
| 27 |
|
ax-1cn |
|- 1 e. CC |
| 28 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 29 |
|
1ex |
|- 1 e. _V |
| 30 |
29
|
elsn |
|- ( 1 e. { 0 } <-> 1 = 0 ) |
| 31 |
28 30
|
nemtbir |
|- -. 1 e. { 0 } |
| 32 |
|
eldif |
|- ( 1 e. ( CC \ { 0 } ) <-> ( 1 e. CC /\ -. 1 e. { 0 } ) ) |
| 33 |
27 31 32
|
mpbir2an |
|- 1 e. ( CC \ { 0 } ) |
| 34 |
33
|
a1i |
|- ( ph -> 1 e. ( CC \ { 0 } ) ) |
| 35 |
1 5 21 2 26 34
|
fprodcllemf |
|- ( ph -> prod_ k e. A B e. ( CC \ { 0 } ) ) |
| 36 |
|
eldifsni |
|- ( prod_ k e. A B e. ( CC \ { 0 } ) -> prod_ k e. A B =/= 0 ) |
| 37 |
35 36
|
syl |
|- ( ph -> prod_ k e. A B =/= 0 ) |