| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodn0f.kph |
|
| 2 |
|
fprodn0f.a |
|
| 3 |
|
fprodn0f.b |
|
| 4 |
|
fprodn0f.bne0 |
|
| 5 |
|
difssd |
|
| 6 |
|
eldifi |
|
| 7 |
6
|
adantr |
|
| 8 |
|
eldifi |
|
| 9 |
8
|
adantl |
|
| 10 |
7 9
|
mulcld |
|
| 11 |
|
eldifsni |
|
| 12 |
11
|
adantr |
|
| 13 |
|
eldifsni |
|
| 14 |
13
|
adantl |
|
| 15 |
7 9 12 14
|
mulne0d |
|
| 16 |
15
|
neneqd |
|
| 17 |
|
ovex |
|
| 18 |
17
|
elsn |
|
| 19 |
16 18
|
sylnibr |
|
| 20 |
10 19
|
eldifd |
|
| 21 |
20
|
adantl |
|
| 22 |
4
|
neneqd |
|
| 23 |
|
elsng |
|
| 24 |
3 23
|
syl |
|
| 25 |
22 24
|
mtbird |
|
| 26 |
3 25
|
eldifd |
|
| 27 |
|
ax-1cn |
|
| 28 |
|
ax-1ne0 |
|
| 29 |
|
1ex |
|
| 30 |
29
|
elsn |
|
| 31 |
28 30
|
nemtbir |
|
| 32 |
|
eldif |
|
| 33 |
27 31 32
|
mpbir2an |
|
| 34 |
33
|
a1i |
|
| 35 |
1 5 21 2 26 34
|
fprodcllemf |
|
| 36 |
|
eldifsni |
|
| 37 |
35 36
|
syl |
|