Step |
Hyp |
Ref |
Expression |
1 |
|
fprodn0f.kph |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
fprodn0f.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
3 |
|
fprodn0f.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
4 |
|
fprodn0f.bne0 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ≠ 0 ) |
5 |
|
difssd |
⊢ ( 𝜑 → ( ℂ ∖ { 0 } ) ⊆ ℂ ) |
6 |
|
eldifi |
⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) → 𝑥 ∈ ℂ ) |
7 |
6
|
adantr |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑥 ∈ ℂ ) |
8 |
|
eldifi |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → 𝑦 ∈ ℂ ) |
9 |
8
|
adantl |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ∈ ℂ ) |
10 |
7 9
|
mulcld |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
11 |
|
eldifsni |
⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) → 𝑥 ≠ 0 ) |
12 |
11
|
adantr |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑥 ≠ 0 ) |
13 |
|
eldifsni |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → 𝑦 ≠ 0 ) |
14 |
13
|
adantl |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ≠ 0 ) |
15 |
7 9 12 14
|
mulne0d |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 · 𝑦 ) ≠ 0 ) |
16 |
15
|
neneqd |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ¬ ( 𝑥 · 𝑦 ) = 0 ) |
17 |
|
ovex |
⊢ ( 𝑥 · 𝑦 ) ∈ V |
18 |
17
|
elsn |
⊢ ( ( 𝑥 · 𝑦 ) ∈ { 0 } ↔ ( 𝑥 · 𝑦 ) = 0 ) |
19 |
16 18
|
sylnibr |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ¬ ( 𝑥 · 𝑦 ) ∈ { 0 } ) |
20 |
10 19
|
eldifd |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 · 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ) |
21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ) → ( 𝑥 · 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ) |
22 |
4
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ¬ 𝐵 = 0 ) |
23 |
|
elsng |
⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ∈ { 0 } ↔ 𝐵 = 0 ) ) |
24 |
3 23
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 ∈ { 0 } ↔ 𝐵 = 0 ) ) |
25 |
22 24
|
mtbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ¬ 𝐵 ∈ { 0 } ) |
26 |
3 25
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( ℂ ∖ { 0 } ) ) |
27 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
28 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
29 |
|
1ex |
⊢ 1 ∈ V |
30 |
29
|
elsn |
⊢ ( 1 ∈ { 0 } ↔ 1 = 0 ) |
31 |
28 30
|
nemtbir |
⊢ ¬ 1 ∈ { 0 } |
32 |
|
eldif |
⊢ ( 1 ∈ ( ℂ ∖ { 0 } ) ↔ ( 1 ∈ ℂ ∧ ¬ 1 ∈ { 0 } ) ) |
33 |
27 31 32
|
mpbir2an |
⊢ 1 ∈ ( ℂ ∖ { 0 } ) |
34 |
33
|
a1i |
⊢ ( 𝜑 → 1 ∈ ( ℂ ∖ { 0 } ) ) |
35 |
1 5 21 2 26 34
|
fprodcllemf |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ( ℂ ∖ { 0 } ) ) |
36 |
|
eldifsni |
⊢ ( ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ( ℂ ∖ { 0 } ) → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) |
37 |
35 36
|
syl |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) |