Description: Closure of a finite product of real numbers. A version of fprodrecl using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodreclf.kph | |- F/ k ph |
|
| fprodcl.a | |- ( ph -> A e. Fin ) |
||
| fprodrecl.b | |- ( ( ph /\ k e. A ) -> B e. RR ) |
||
| Assertion | fprodreclf | |- ( ph -> prod_ k e. A B e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodreclf.kph | |- F/ k ph |
|
| 2 | fprodcl.a | |- ( ph -> A e. Fin ) |
|
| 3 | fprodrecl.b | |- ( ( ph /\ k e. A ) -> B e. RR ) |
|
| 4 | ax-resscn | |- RR C_ CC |
|
| 5 | 4 | a1i | |- ( ph -> RR C_ CC ) |
| 6 | remulcl | |- ( ( x e. RR /\ y e. RR ) -> ( x x. y ) e. RR ) |
|
| 7 | 6 | adantl | |- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. RR ) |
| 8 | 1red | |- ( ph -> 1 e. RR ) |
|
| 9 | 1 5 7 2 3 8 | fprodcllemf | |- ( ph -> prod_ k e. A B e. RR ) |