Metamath Proof Explorer


Theorem fprodreclf

Description: Closure of a finite product of real numbers. A version of fprodrecl using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fprodreclf.kph kφ
fprodcl.a φAFin
fprodrecl.b φkAB
Assertion fprodreclf φkAB

Proof

Step Hyp Ref Expression
1 fprodreclf.kph kφ
2 fprodcl.a φAFin
3 fprodrecl.b φkAB
4 ax-resscn
5 4 a1i φ
6 remulcl xyxy
7 6 adantl φxyxy
8 1red φ1
9 1 5 7 2 3 8 fprodcllemf φkAB