| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodge0.kph |
|- F/ k ph |
| 2 |
|
fprodge0.a |
|- ( ph -> A e. Fin ) |
| 3 |
|
fprodge0.b |
|- ( ( ph /\ k e. A ) -> B e. RR ) |
| 4 |
|
fprodge0.0leb |
|- ( ( ph /\ k e. A ) -> 0 <_ B ) |
| 5 |
|
0xr |
|- 0 e. RR* |
| 6 |
|
pnfxr |
|- +oo e. RR* |
| 7 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 8 |
|
ax-resscn |
|- RR C_ CC |
| 9 |
7 8
|
sstri |
|- ( 0 [,) +oo ) C_ CC |
| 10 |
9
|
a1i |
|- ( ph -> ( 0 [,) +oo ) C_ CC ) |
| 11 |
|
ge0mulcl |
|- ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> ( x x. y ) e. ( 0 [,) +oo ) ) |
| 12 |
11
|
adantl |
|- ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> ( x x. y ) e. ( 0 [,) +oo ) ) |
| 13 |
|
elrege0 |
|- ( B e. ( 0 [,) +oo ) <-> ( B e. RR /\ 0 <_ B ) ) |
| 14 |
3 4 13
|
sylanbrc |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,) +oo ) ) |
| 15 |
|
1re |
|- 1 e. RR |
| 16 |
|
0le1 |
|- 0 <_ 1 |
| 17 |
|
ltpnf |
|- ( 1 e. RR -> 1 < +oo ) |
| 18 |
15 17
|
ax-mp |
|- 1 < +oo |
| 19 |
|
0re |
|- 0 e. RR |
| 20 |
|
elico2 |
|- ( ( 0 e. RR /\ +oo e. RR* ) -> ( 1 e. ( 0 [,) +oo ) <-> ( 1 e. RR /\ 0 <_ 1 /\ 1 < +oo ) ) ) |
| 21 |
19 6 20
|
mp2an |
|- ( 1 e. ( 0 [,) +oo ) <-> ( 1 e. RR /\ 0 <_ 1 /\ 1 < +oo ) ) |
| 22 |
15 16 18 21
|
mpbir3an |
|- 1 e. ( 0 [,) +oo ) |
| 23 |
22
|
a1i |
|- ( ph -> 1 e. ( 0 [,) +oo ) ) |
| 24 |
1 10 12 2 14 23
|
fprodcllemf |
|- ( ph -> prod_ k e. A B e. ( 0 [,) +oo ) ) |
| 25 |
|
icogelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ prod_ k e. A B e. ( 0 [,) +oo ) ) -> 0 <_ prod_ k e. A B ) |
| 26 |
5 6 24 25
|
mp3an12i |
|- ( ph -> 0 <_ prod_ k e. A B ) |