| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodge0.kph |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
fprodge0.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 3 |
|
fprodge0.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 4 |
|
fprodge0.0leb |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) |
| 5 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 6 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 7 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 8 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 9 |
7 8
|
sstri |
⊢ ( 0 [,) +∞ ) ⊆ ℂ |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → ( 0 [,) +∞ ) ⊆ ℂ ) |
| 11 |
|
ge0mulcl |
⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 · 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ) → ( 𝑥 · 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
| 13 |
|
elrege0 |
⊢ ( 𝐵 ∈ ( 0 [,) +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
| 14 |
3 4 13
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
| 15 |
|
1re |
⊢ 1 ∈ ℝ |
| 16 |
|
0le1 |
⊢ 0 ≤ 1 |
| 17 |
|
ltpnf |
⊢ ( 1 ∈ ℝ → 1 < +∞ ) |
| 18 |
15 17
|
ax-mp |
⊢ 1 < +∞ |
| 19 |
|
0re |
⊢ 0 ∈ ℝ |
| 20 |
|
elico2 |
⊢ ( ( 0 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 1 ∈ ( 0 [,) +∞ ) ↔ ( 1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞ ) ) ) |
| 21 |
19 6 20
|
mp2an |
⊢ ( 1 ∈ ( 0 [,) +∞ ) ↔ ( 1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞ ) ) |
| 22 |
15 16 18 21
|
mpbir3an |
⊢ 1 ∈ ( 0 [,) +∞ ) |
| 23 |
22
|
a1i |
⊢ ( 𝜑 → 1 ∈ ( 0 [,) +∞ ) ) |
| 24 |
1 10 12 2 14 23
|
fprodcllemf |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,) +∞ ) ) |
| 25 |
|
icogelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,) +∞ ) ) → 0 ≤ ∏ 𝑘 ∈ 𝐴 𝐵 ) |
| 26 |
5 6 24 25
|
mp3an12i |
⊢ ( 𝜑 → 0 ≤ ∏ 𝑘 ∈ 𝐴 𝐵 ) |