Metamath Proof Explorer


Theorem fprodge0

Description: If all the terms of a finite product are nonnegative, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fprodge0.kph kφ
fprodge0.a φAFin
fprodge0.b φkAB
fprodge0.0leb φkA0B
Assertion fprodge0 φ0kAB

Proof

Step Hyp Ref Expression
1 fprodge0.kph kφ
2 fprodge0.a φAFin
3 fprodge0.b φkAB
4 fprodge0.0leb φkA0B
5 0xr 0*
6 pnfxr +∞*
7 rge0ssre 0+∞
8 ax-resscn
9 7 8 sstri 0+∞
10 9 a1i φ0+∞
11 ge0mulcl x0+∞y0+∞xy0+∞
12 11 adantl φx0+∞y0+∞xy0+∞
13 elrege0 B0+∞B0B
14 3 4 13 sylanbrc φkAB0+∞
15 1re 1
16 0le1 01
17 ltpnf 11<+∞
18 15 17 ax-mp 1<+∞
19 0re 0
20 elico2 0+∞*10+∞1011<+∞
21 19 6 20 mp2an 10+∞1011<+∞
22 15 16 18 21 mpbir3an 10+∞
23 22 a1i φ10+∞
24 1 10 12 2 14 23 fprodcllemf φkAB0+∞
25 icogelb 0*+∞*kAB0+∞0kAB
26 5 6 24 25 mp3an12i φ0kAB