Metamath Proof Explorer


Theorem elico2

Description: Membership in a closed-below, open-above real interval. (Contributed by Paul Chapman, 21-Jan-2008) (Revised by Mario Carneiro, 14-Jun-2014)

Ref Expression
Assertion elico2 A B * C A B C A C C < B

Proof

Step Hyp Ref Expression
1 rexr A A *
2 elico1 A * B * C A B C * A C C < B
3 1 2 sylan A B * C A B C * A C C < B
4 mnfxr −∞ *
5 4 a1i A B * C * A C C < B −∞ *
6 1 ad2antrr A B * C * A C C < B A *
7 simpr1 A B * C * A C C < B C *
8 mnflt A −∞ < A
9 8 ad2antrr A B * C * A C C < B −∞ < A
10 simpr2 A B * C * A C C < B A C
11 5 6 7 9 10 xrltletrd A B * C * A C C < B −∞ < C
12 simplr A B * C * A C C < B B *
13 pnfxr +∞ *
14 13 a1i A B * C * A C C < B +∞ *
15 simpr3 A B * C * A C C < B C < B
16 pnfge B * B +∞
17 16 ad2antlr A B * C * A C C < B B +∞
18 7 12 14 15 17 xrltletrd A B * C * A C C < B C < +∞
19 xrrebnd C * C −∞ < C C < +∞
20 7 19 syl A B * C * A C C < B C −∞ < C C < +∞
21 11 18 20 mpbir2and A B * C * A C C < B C
22 21 10 15 3jca A B * C * A C C < B C A C C < B
23 22 ex A B * C * A C C < B C A C C < B
24 rexr C C *
25 24 3anim1i C A C C < B C * A C C < B
26 23 25 impbid1 A B * C * A C C < B C A C C < B
27 3 26 bitrd A B * C A B C A C C < B