| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodle.kph |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
fprodle.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 3 |
|
fprodle.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 4 |
|
fprodle.0l3b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) |
| 5 |
|
fprodle.c |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
| 6 |
|
fprodle.blec |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ≤ 𝐶 ) |
| 7 |
|
1red |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → 1 ∈ ℝ ) |
| 8 |
|
nfra1 |
⊢ Ⅎ 𝑘 ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 |
| 9 |
1 8
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) |
| 10 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → 𝐴 ∈ Fin ) |
| 11 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
| 12 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 13 |
|
rspa |
⊢ ( ( ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ≠ 0 ) |
| 14 |
13
|
adantll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ≠ 0 ) |
| 15 |
11 12 14
|
redivcld |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝐶 / 𝐵 ) ∈ ℝ ) |
| 16 |
9 10 15
|
fprodreclf |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ∏ 𝑘 ∈ 𝐴 ( 𝐶 / 𝐵 ) ∈ ℝ ) |
| 17 |
1 2 3
|
fprodreclf |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) |
| 19 |
1 2 3 4
|
fprodge0 |
⊢ ( 𝜑 → 0 ≤ ∏ 𝑘 ∈ 𝐴 𝐵 ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → 0 ≤ ∏ 𝑘 ∈ 𝐴 𝐵 ) |
| 21 |
4
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) |
| 22 |
12 21 14
|
ne0gt0d |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 0 < 𝐵 ) |
| 23 |
12 22
|
elrpd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ+ ) |
| 24 |
6
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ≤ 𝐶 ) |
| 25 |
|
divge1 |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ≤ 𝐶 ) → 1 ≤ ( 𝐶 / 𝐵 ) ) |
| 26 |
23 11 24 25
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 1 ≤ ( 𝐶 / 𝐵 ) ) |
| 27 |
9 10 15 26
|
fprodge1 |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → 1 ≤ ∏ 𝑘 ∈ 𝐴 ( 𝐶 / 𝐵 ) ) |
| 28 |
7 16 18 20 27
|
lemul2ad |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ( ∏ 𝑘 ∈ 𝐴 𝐵 · 1 ) ≤ ( ∏ 𝑘 ∈ 𝐴 𝐵 · ∏ 𝑘 ∈ 𝐴 ( 𝐶 / 𝐵 ) ) ) |
| 29 |
3
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 30 |
1 2 29
|
fprodclf |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 31 |
30
|
mulridd |
⊢ ( 𝜑 → ( ∏ 𝑘 ∈ 𝐴 𝐵 · 1 ) = ∏ 𝑘 ∈ 𝐴 𝐵 ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ( ∏ 𝑘 ∈ 𝐴 𝐵 · 1 ) = ∏ 𝑘 ∈ 𝐴 𝐵 ) |
| 33 |
5
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 34 |
33
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 35 |
29
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 36 |
9 10 34 35 14
|
fproddivf |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ∏ 𝑘 ∈ 𝐴 ( 𝐶 / 𝐵 ) = ( ∏ 𝑘 ∈ 𝐴 𝐶 / ∏ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 37 |
36
|
oveq2d |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ( ∏ 𝑘 ∈ 𝐴 𝐵 · ∏ 𝑘 ∈ 𝐴 ( 𝐶 / 𝐵 ) ) = ( ∏ 𝑘 ∈ 𝐴 𝐵 · ( ∏ 𝑘 ∈ 𝐴 𝐶 / ∏ 𝑘 ∈ 𝐴 𝐵 ) ) ) |
| 38 |
1 2 33
|
fprodclf |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ) |
| 39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ∏ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ) |
| 40 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 41 |
9 10 35 14
|
fprodn0f |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) |
| 42 |
39 40 41
|
divcan2d |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ( ∏ 𝑘 ∈ 𝐴 𝐵 · ( ∏ 𝑘 ∈ 𝐴 𝐶 / ∏ 𝑘 ∈ 𝐴 𝐵 ) ) = ∏ 𝑘 ∈ 𝐴 𝐶 ) |
| 43 |
37 42
|
eqtrd |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ( ∏ 𝑘 ∈ 𝐴 𝐵 · ∏ 𝑘 ∈ 𝐴 ( 𝐶 / 𝐵 ) ) = ∏ 𝑘 ∈ 𝐴 𝐶 ) |
| 44 |
28 32 43
|
3brtr3d |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ∏ 𝑘 ∈ 𝐴 𝐵 ≤ ∏ 𝑘 ∈ 𝐴 𝐶 ) |
| 45 |
|
nne |
⊢ ( ¬ 𝐵 ≠ 0 ↔ 𝐵 = 0 ) |
| 46 |
45
|
rexbii |
⊢ ( ∃ 𝑘 ∈ 𝐴 ¬ 𝐵 ≠ 0 ↔ ∃ 𝑘 ∈ 𝐴 𝐵 = 0 ) |
| 47 |
|
rexnal |
⊢ ( ∃ 𝑘 ∈ 𝐴 ¬ 𝐵 ≠ 0 ↔ ¬ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) |
| 48 |
|
nfv |
⊢ Ⅎ 𝑗 𝐵 = 0 |
| 49 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 |
| 50 |
49
|
nfeq1 |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 |
| 51 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
| 52 |
51
|
eqeq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐵 = 0 ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) ) |
| 53 |
48 50 52
|
cbvrexw |
⊢ ( ∃ 𝑘 ∈ 𝐴 𝐵 = 0 ↔ ∃ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) |
| 54 |
46 47 53
|
3bitr3i |
⊢ ( ¬ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ↔ ∃ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) |
| 55 |
|
nfv |
⊢ Ⅎ 𝑘 𝑗 ∈ 𝐴 |
| 56 |
1 55 50
|
nf3an |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝐴 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) |
| 57 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) → 𝐴 ∈ Fin ) |
| 58 |
29
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 59 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) → 𝑗 ∈ 𝐴 ) |
| 60 |
52
|
biimparc |
⊢ ( ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ∧ 𝑘 = 𝑗 ) → 𝐵 = 0 ) |
| 61 |
60
|
3ad2antl3 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) ∧ 𝑘 = 𝑗 ) → 𝐵 = 0 ) |
| 62 |
56 57 58 59 61
|
fprodeq0g |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) → ∏ 𝑘 ∈ 𝐴 𝐵 = 0 ) |
| 63 |
62
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 → ∏ 𝑘 ∈ 𝐴 𝐵 = 0 ) ) |
| 64 |
63
|
imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) → ∏ 𝑘 ∈ 𝐴 𝐵 = 0 ) |
| 65 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ∈ ℝ ) |
| 66 |
65 3 5 4 6
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐶 ) |
| 67 |
1 2 5 66
|
fprodge0 |
⊢ ( 𝜑 → 0 ≤ ∏ 𝑘 ∈ 𝐴 𝐶 ) |
| 68 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ ∃ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) → 0 ≤ ∏ 𝑘 ∈ 𝐴 𝐶 ) |
| 69 |
64 68
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ∃ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) → ∏ 𝑘 ∈ 𝐴 𝐵 ≤ ∏ 𝑘 ∈ 𝐴 𝐶 ) |
| 70 |
54 69
|
sylan2b |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ∏ 𝑘 ∈ 𝐴 𝐵 ≤ ∏ 𝑘 ∈ 𝐴 𝐶 ) |
| 71 |
44 70
|
pm2.61dan |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ≤ ∏ 𝑘 ∈ 𝐴 𝐶 ) |