| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodmodd.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 2 |
|
fprodmodd.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℤ ) |
| 3 |
|
fprodmodd.c |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℤ ) |
| 4 |
|
fprodmodd.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 5 |
|
fprodmodd.p |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 mod 𝑀 ) = ( 𝐶 mod 𝑀 ) ) |
| 6 |
|
prodeq1 |
⊢ ( 𝑥 = ∅ → ∏ 𝑘 ∈ 𝑥 𝐵 = ∏ 𝑘 ∈ ∅ 𝐵 ) |
| 7 |
6
|
oveq1d |
⊢ ( 𝑥 = ∅ → ( ∏ 𝑘 ∈ 𝑥 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ ∅ 𝐵 mod 𝑀 ) ) |
| 8 |
|
prodeq1 |
⊢ ( 𝑥 = ∅ → ∏ 𝑘 ∈ 𝑥 𝐶 = ∏ 𝑘 ∈ ∅ 𝐶 ) |
| 9 |
8
|
oveq1d |
⊢ ( 𝑥 = ∅ → ( ∏ 𝑘 ∈ 𝑥 𝐶 mod 𝑀 ) = ( ∏ 𝑘 ∈ ∅ 𝐶 mod 𝑀 ) ) |
| 10 |
7 9
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( ∏ 𝑘 ∈ 𝑥 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑥 𝐶 mod 𝑀 ) ↔ ( ∏ 𝑘 ∈ ∅ 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ ∅ 𝐶 mod 𝑀 ) ) ) |
| 11 |
|
prodeq1 |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑘 ∈ 𝑥 𝐵 = ∏ 𝑘 ∈ 𝑦 𝐵 ) |
| 12 |
11
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ∏ 𝑘 ∈ 𝑥 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) ) |
| 13 |
|
prodeq1 |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑘 ∈ 𝑥 𝐶 = ∏ 𝑘 ∈ 𝑦 𝐶 ) |
| 14 |
13
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ∏ 𝑘 ∈ 𝑥 𝐶 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) |
| 15 |
12 14
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ∏ 𝑘 ∈ 𝑥 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑥 𝐶 mod 𝑀 ) ↔ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) ) |
| 16 |
|
prodeq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑖 } ) → ∏ 𝑘 ∈ 𝑥 𝐵 = ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐵 ) |
| 17 |
16
|
oveq1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑖 } ) → ( ∏ 𝑘 ∈ 𝑥 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐵 mod 𝑀 ) ) |
| 18 |
|
prodeq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑖 } ) → ∏ 𝑘 ∈ 𝑥 𝐶 = ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐶 ) |
| 19 |
18
|
oveq1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑖 } ) → ( ∏ 𝑘 ∈ 𝑥 𝐶 mod 𝑀 ) = ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐶 mod 𝑀 ) ) |
| 20 |
17 19
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑖 } ) → ( ( ∏ 𝑘 ∈ 𝑥 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑥 𝐶 mod 𝑀 ) ↔ ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐶 mod 𝑀 ) ) ) |
| 21 |
|
prodeq1 |
⊢ ( 𝑥 = 𝐴 → ∏ 𝑘 ∈ 𝑥 𝐵 = ∏ 𝑘 ∈ 𝐴 𝐵 ) |
| 22 |
21
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ∏ 𝑘 ∈ 𝑥 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝐴 𝐵 mod 𝑀 ) ) |
| 23 |
|
prodeq1 |
⊢ ( 𝑥 = 𝐴 → ∏ 𝑘 ∈ 𝑥 𝐶 = ∏ 𝑘 ∈ 𝐴 𝐶 ) |
| 24 |
23
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ∏ 𝑘 ∈ 𝑥 𝐶 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝐴 𝐶 mod 𝑀 ) ) |
| 25 |
22 24
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( ∏ 𝑘 ∈ 𝑥 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑥 𝐶 mod 𝑀 ) ↔ ( ∏ 𝑘 ∈ 𝐴 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝐴 𝐶 mod 𝑀 ) ) ) |
| 26 |
|
prod0 |
⊢ ∏ 𝑘 ∈ ∅ 𝐵 = 1 |
| 27 |
26
|
a1i |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ∅ 𝐵 = 1 ) |
| 28 |
27
|
oveq1d |
⊢ ( 𝜑 → ( ∏ 𝑘 ∈ ∅ 𝐵 mod 𝑀 ) = ( 1 mod 𝑀 ) ) |
| 29 |
|
prod0 |
⊢ ∏ 𝑘 ∈ ∅ 𝐶 = 1 |
| 30 |
29
|
eqcomi |
⊢ 1 = ∏ 𝑘 ∈ ∅ 𝐶 |
| 31 |
30
|
oveq1i |
⊢ ( 1 mod 𝑀 ) = ( ∏ 𝑘 ∈ ∅ 𝐶 mod 𝑀 ) |
| 32 |
28 31
|
eqtrdi |
⊢ ( 𝜑 → ( ∏ 𝑘 ∈ ∅ 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ ∅ 𝐶 mod 𝑀 ) ) |
| 33 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) |
| 34 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑖 / 𝑘 ⦌ 𝐵 |
| 35 |
|
ssfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ∈ Fin ) |
| 36 |
35
|
ex |
⊢ ( 𝐴 ∈ Fin → ( 𝑦 ⊆ 𝐴 → 𝑦 ∈ Fin ) ) |
| 37 |
36 1
|
syl11 |
⊢ ( 𝑦 ⊆ 𝐴 → ( 𝜑 → 𝑦 ∈ Fin ) ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) → ( 𝜑 → 𝑦 ∈ Fin ) ) |
| 39 |
38
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑦 ∈ Fin ) |
| 40 |
|
simpr |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) |
| 41 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) |
| 42 |
|
eldifn |
⊢ ( 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) → ¬ 𝑖 ∈ 𝑦 ) |
| 43 |
42
|
adantl |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) → ¬ 𝑖 ∈ 𝑦 ) |
| 44 |
43
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ¬ 𝑖 ∈ 𝑦 ) |
| 45 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝜑 ) |
| 46 |
|
ssel |
⊢ ( 𝑦 ⊆ 𝐴 → ( 𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴 ) ) |
| 47 |
46
|
adantr |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) → ( 𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴 ) ) |
| 48 |
47
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴 ) ) |
| 49 |
48
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝑘 ∈ 𝐴 ) |
| 50 |
45 49 2
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝐵 ∈ ℤ ) |
| 51 |
50
|
zcnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝐵 ∈ ℂ ) |
| 52 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑖 → 𝐵 = ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) |
| 53 |
|
eldifi |
⊢ ( 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) → 𝑖 ∈ 𝐴 ) |
| 54 |
53
|
adantl |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑖 ∈ 𝐴 ) |
| 55 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) |
| 56 |
|
rspcsbela |
⊢ ( ( 𝑖 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ ℤ ) |
| 57 |
54 55 56
|
syl2anr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ ℤ ) |
| 58 |
57
|
zcnd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 59 |
33 34 39 41 44 51 52 58
|
fprodsplitsn |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐵 = ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) ) |
| 60 |
59
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐵 mod 𝑀 ) = ( ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) mod 𝑀 ) ) |
| 61 |
60
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐵 mod 𝑀 ) = ( ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) mod 𝑀 ) ) |
| 62 |
39 50
|
fprodzcl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∏ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ) |
| 63 |
62
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ∏ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ) |
| 64 |
45 49 3
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝐶 ∈ ℤ ) |
| 65 |
39 64
|
fprodzcl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∏ 𝑘 ∈ 𝑦 𝐶 ∈ ℤ ) |
| 66 |
65
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ∏ 𝑘 ∈ 𝑦 𝐶 ∈ ℤ ) |
| 67 |
57
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ ℤ ) |
| 68 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ℤ ) |
| 69 |
|
rspcsbela |
⊢ ( ( 𝑖 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ℤ ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ∈ ℤ ) |
| 70 |
54 68 69
|
syl2anr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ∈ ℤ ) |
| 71 |
70
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ∈ ℤ ) |
| 72 |
4
|
nnrpd |
⊢ ( 𝜑 → 𝑀 ∈ ℝ+ ) |
| 73 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑀 ∈ ℝ+ ) |
| 74 |
73
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → 𝑀 ∈ ℝ+ ) |
| 75 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) |
| 76 |
5
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 ( 𝐵 mod 𝑀 ) = ( 𝐶 mod 𝑀 ) ) |
| 77 |
|
rspsbca |
⊢ ( ( 𝑖 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝐵 mod 𝑀 ) = ( 𝐶 mod 𝑀 ) ) → [ 𝑖 / 𝑘 ] ( 𝐵 mod 𝑀 ) = ( 𝐶 mod 𝑀 ) ) |
| 78 |
54 76 77
|
syl2anr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → [ 𝑖 / 𝑘 ] ( 𝐵 mod 𝑀 ) = ( 𝐶 mod 𝑀 ) ) |
| 79 |
|
vex |
⊢ 𝑖 ∈ V |
| 80 |
|
sbceqg |
⊢ ( 𝑖 ∈ V → ( [ 𝑖 / 𝑘 ] ( 𝐵 mod 𝑀 ) = ( 𝐶 mod 𝑀 ) ↔ ⦋ 𝑖 / 𝑘 ⦌ ( 𝐵 mod 𝑀 ) = ⦋ 𝑖 / 𝑘 ⦌ ( 𝐶 mod 𝑀 ) ) ) |
| 81 |
79 80
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( [ 𝑖 / 𝑘 ] ( 𝐵 mod 𝑀 ) = ( 𝐶 mod 𝑀 ) ↔ ⦋ 𝑖 / 𝑘 ⦌ ( 𝐵 mod 𝑀 ) = ⦋ 𝑖 / 𝑘 ⦌ ( 𝐶 mod 𝑀 ) ) ) |
| 82 |
78 81
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ⦋ 𝑖 / 𝑘 ⦌ ( 𝐵 mod 𝑀 ) = ⦋ 𝑖 / 𝑘 ⦌ ( 𝐶 mod 𝑀 ) ) |
| 83 |
|
csbov1g |
⊢ ( 𝑖 ∈ V → ⦋ 𝑖 / 𝑘 ⦌ ( 𝐵 mod 𝑀 ) = ( ⦋ 𝑖 / 𝑘 ⦌ 𝐵 mod 𝑀 ) ) |
| 84 |
83
|
elv |
⊢ ⦋ 𝑖 / 𝑘 ⦌ ( 𝐵 mod 𝑀 ) = ( ⦋ 𝑖 / 𝑘 ⦌ 𝐵 mod 𝑀 ) |
| 85 |
|
csbov1g |
⊢ ( 𝑖 ∈ V → ⦋ 𝑖 / 𝑘 ⦌ ( 𝐶 mod 𝑀 ) = ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 mod 𝑀 ) ) |
| 86 |
85
|
elv |
⊢ ⦋ 𝑖 / 𝑘 ⦌ ( 𝐶 mod 𝑀 ) = ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 mod 𝑀 ) |
| 87 |
82 84 86
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐵 mod 𝑀 ) = ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 mod 𝑀 ) ) |
| 88 |
87
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐵 mod 𝑀 ) = ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 mod 𝑀 ) ) |
| 89 |
63 66 67 71 74 75 88
|
modmul12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ( ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) mod 𝑀 ) = ( ( ∏ 𝑘 ∈ 𝑦 𝐶 · ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ) mod 𝑀 ) ) |
| 90 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑖 / 𝑘 ⦌ 𝐶 |
| 91 |
64
|
zcnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝐶 ∈ ℂ ) |
| 92 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑖 → 𝐶 = ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ) |
| 93 |
70
|
zcnd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
| 94 |
33 90 39 41 44 91 92 93
|
fprodsplitsn |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐶 = ( ∏ 𝑘 ∈ 𝑦 𝐶 · ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ) ) |
| 95 |
94
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐶 mod 𝑀 ) = ( ( ∏ 𝑘 ∈ 𝑦 𝐶 · ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ) mod 𝑀 ) ) |
| 96 |
95
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ( ∏ 𝑘 ∈ 𝑦 𝐶 · ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ) mod 𝑀 ) = ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐶 mod 𝑀 ) ) |
| 97 |
96
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ( ( ∏ 𝑘 ∈ 𝑦 𝐶 · ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ) mod 𝑀 ) = ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐶 mod 𝑀 ) ) |
| 98 |
61 89 97
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐶 mod 𝑀 ) ) |
| 99 |
98
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) → ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐶 mod 𝑀 ) ) ) |
| 100 |
10 15 20 25 32 99 1
|
findcard2d |
⊢ ( 𝜑 → ( ∏ 𝑘 ∈ 𝐴 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝐴 𝐶 mod 𝑀 ) ) |