Step |
Hyp |
Ref |
Expression |
1 |
|
modmul12d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
2 |
|
modmul12d.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
3 |
|
modmul12d.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℤ ) |
4 |
|
modmul12d.4 |
⊢ ( 𝜑 → 𝐷 ∈ ℤ ) |
5 |
|
modmul12d.5 |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
6 |
|
modmul12d.6 |
⊢ ( 𝜑 → ( 𝐴 mod 𝐸 ) = ( 𝐵 mod 𝐸 ) ) |
7 |
|
modmul12d.7 |
⊢ ( 𝜑 → ( 𝐶 mod 𝐸 ) = ( 𝐷 mod 𝐸 ) ) |
8 |
1
|
zred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
9 |
2
|
zred |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
10 |
|
modmul1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℤ ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝐸 ) = ( 𝐵 mod 𝐸 ) ) → ( ( 𝐴 · 𝐶 ) mod 𝐸 ) = ( ( 𝐵 · 𝐶 ) mod 𝐸 ) ) |
11 |
8 9 3 5 6 10
|
syl221anc |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐶 ) mod 𝐸 ) = ( ( 𝐵 · 𝐶 ) mod 𝐸 ) ) |
12 |
2
|
zcnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
13 |
3
|
zcnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
14 |
12 13
|
mulcomd |
⊢ ( 𝜑 → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) |
15 |
14
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐶 ) mod 𝐸 ) = ( ( 𝐶 · 𝐵 ) mod 𝐸 ) ) |
16 |
3
|
zred |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
17 |
4
|
zred |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
18 |
|
modmul1 |
⊢ ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝐶 mod 𝐸 ) = ( 𝐷 mod 𝐸 ) ) → ( ( 𝐶 · 𝐵 ) mod 𝐸 ) = ( ( 𝐷 · 𝐵 ) mod 𝐸 ) ) |
19 |
16 17 2 5 7 18
|
syl221anc |
⊢ ( 𝜑 → ( ( 𝐶 · 𝐵 ) mod 𝐸 ) = ( ( 𝐷 · 𝐵 ) mod 𝐸 ) ) |
20 |
4
|
zcnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
21 |
20 12
|
mulcomd |
⊢ ( 𝜑 → ( 𝐷 · 𝐵 ) = ( 𝐵 · 𝐷 ) ) |
22 |
21
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐷 · 𝐵 ) mod 𝐸 ) = ( ( 𝐵 · 𝐷 ) mod 𝐸 ) ) |
23 |
15 19 22
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐶 ) mod 𝐸 ) = ( ( 𝐵 · 𝐷 ) mod 𝐸 ) ) |
24 |
11 23
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐶 ) mod 𝐸 ) = ( ( 𝐵 · 𝐷 ) mod 𝐸 ) ) |