Description: Multiplication property of the modulo operation, see theorem 5.2(b) in ApostolNT p. 107. (Contributed by Mario Carneiro, 5-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | modmul12d.1 | |
|
modmul12d.2 | |
||
modmul12d.3 | |
||
modmul12d.4 | |
||
modmul12d.5 | |
||
modmul12d.6 | |
||
modmul12d.7 | |
||
Assertion | modmul12d | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modmul12d.1 | |
|
2 | modmul12d.2 | |
|
3 | modmul12d.3 | |
|
4 | modmul12d.4 | |
|
5 | modmul12d.5 | |
|
6 | modmul12d.6 | |
|
7 | modmul12d.7 | |
|
8 | 1 | zred | |
9 | 2 | zred | |
10 | modmul1 | |
|
11 | 8 9 3 5 6 10 | syl221anc | |
12 | 2 | zcnd | |
13 | 3 | zcnd | |
14 | 12 13 | mulcomd | |
15 | 14 | oveq1d | |
16 | 3 | zred | |
17 | 4 | zred | |
18 | modmul1 | |
|
19 | 16 17 2 5 7 18 | syl221anc | |
20 | 4 | zcnd | |
21 | 20 12 | mulcomd | |
22 | 21 | oveq1d | |
23 | 15 19 22 | 3eqtrd | |
24 | 11 23 | eqtrd | |