Metamath Proof Explorer


Theorem modmul12d

Description: Multiplication property of the modulo operation, see theorem 5.2(b) in ApostolNT p. 107. (Contributed by Mario Carneiro, 5-Feb-2015)

Ref Expression
Hypotheses modmul12d.1 φA
modmul12d.2 φB
modmul12d.3 φC
modmul12d.4 φD
modmul12d.5 φE+
modmul12d.6 φAmodE=BmodE
modmul12d.7 φCmodE=DmodE
Assertion modmul12d φACmodE=BDmodE

Proof

Step Hyp Ref Expression
1 modmul12d.1 φA
2 modmul12d.2 φB
3 modmul12d.3 φC
4 modmul12d.4 φD
5 modmul12d.5 φE+
6 modmul12d.6 φAmodE=BmodE
7 modmul12d.7 φCmodE=DmodE
8 1 zred φA
9 2 zred φB
10 modmul1 ABCE+AmodE=BmodEACmodE=BCmodE
11 8 9 3 5 6 10 syl221anc φACmodE=BCmodE
12 2 zcnd φB
13 3 zcnd φC
14 12 13 mulcomd φBC=CB
15 14 oveq1d φBCmodE=CBmodE
16 3 zred φC
17 4 zred φD
18 modmul1 CDBE+CmodE=DmodECBmodE=DBmodE
19 16 17 2 5 7 18 syl221anc φCBmodE=DBmodE
20 4 zcnd φD
21 20 12 mulcomd φDB=BD
22 21 oveq1d φDBmodE=BDmodE
23 15 19 22 3eqtrd φBCmodE=BDmodE
24 11 23 eqtrd φACmodE=BDmodE