Metamath Proof Explorer


Theorem modmul1

Description: Multiplication property of the modulo operation. Note that the multiplier C must be an integer. (Contributed by NM, 12-Nov-2008)

Ref Expression
Assertion modmul1 ABCD+AmodD=BmodDACmodD=BCmodD

Proof

Step Hyp Ref Expression
1 modval AD+AmodD=ADAD
2 modval BD+BmodD=BDBD
3 1 2 eqeqan12d AD+BD+AmodD=BmodDADAD=BDBD
4 3 anandirs ABD+AmodD=BmodDADAD=BDBD
5 4 adantrl ABCD+AmodD=BmodDADAD=BDBD
6 oveq1 ADAD=BDBDADADC=BDBDC
7 5 6 syl6bi ABCD+AmodD=BmodDADADC=BDBDC
8 rpcn D+D
9 8 ad2antll ACD+D
10 zcn CC
11 10 ad2antrl ACD+C
12 rerpdivcl AD+AD
13 12 flcld AD+AD
14 13 zcnd AD+AD
15 14 adantrl ACD+AD
16 9 11 15 mulassd ACD+DCAD=DCAD
17 9 11 15 mul32d ACD+DCAD=DADC
18 16 17 eqtr3d ACD+DCAD=DADC
19 18 oveq2d ACD+ACDCAD=ACDADC
20 recn AA
21 20 adantr ACD+A
22 8 adantl AD+D
23 22 14 mulcld AD+DAD
24 23 adantrl ACD+DAD
25 21 24 11 subdird ACD+ADADC=ACDADC
26 19 25 eqtr4d ACD+ACDCAD=ADADC
27 26 adantlr ABCD+ACDCAD=ADADC
28 8 ad2antll BCD+D
29 10 ad2antrl BCD+C
30 rerpdivcl BD+BD
31 30 flcld BD+BD
32 31 zcnd BD+BD
33 32 adantrl BCD+BD
34 28 29 33 mulassd BCD+DCBD=DCBD
35 28 29 33 mul32d BCD+DCBD=DBDC
36 34 35 eqtr3d BCD+DCBD=DBDC
37 36 oveq2d BCD+BCDCBD=BCDBDC
38 recn BB
39 38 adantr BCD+B
40 8 adantl BD+D
41 40 32 mulcld BD+DBD
42 41 adantrl BCD+DBD
43 39 42 29 subdird BCD+BDBDC=BCDBDC
44 37 43 eqtr4d BCD+BCDCBD=BDBDC
45 44 adantll ABCD+BCDCBD=BDBDC
46 27 45 eqeq12d ABCD+ACDCAD=BCDCBDADADC=BDBDC
47 7 46 sylibrd ABCD+AmodD=BmodDACDCAD=BCDCBD
48 oveq1 ACDCAD=BCDCBDACDCADmodD=BCDCBDmodD
49 zre CC
50 remulcl ACAC
51 49 50 sylan2 ACAC
52 51 adantrr ACD+AC
53 simprr ACD+D+
54 simprl ACD+C
55 13 adantrl ACD+AD
56 54 55 zmulcld ACD+CAD
57 modcyc2 ACD+CADACDCADmodD=ACmodD
58 52 53 56 57 syl3anc ACD+ACDCADmodD=ACmodD
59 58 adantlr ABCD+ACDCADmodD=ACmodD
60 remulcl BCBC
61 49 60 sylan2 BCBC
62 61 adantrr BCD+BC
63 simprr BCD+D+
64 simprl BCD+C
65 31 adantrl BCD+BD
66 64 65 zmulcld BCD+CBD
67 modcyc2 BCD+CBDBCDCBDmodD=BCmodD
68 62 63 66 67 syl3anc BCD+BCDCBDmodD=BCmodD
69 68 adantll ABCD+BCDCBDmodD=BCmodD
70 59 69 eqeq12d ABCD+ACDCADmodD=BCDCBDmodDACmodD=BCmodD
71 48 70 imbitrid ABCD+ACDCAD=BCDCBDACmodD=BCmodD
72 47 71 syld ABCD+AmodD=BmodDACmodD=BCmodD
73 72 3impia ABCD+AmodD=BmodDACmodD=BCmodD