| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fproddivf.kph |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
fproddivf.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 3 |
|
fproddivf.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 4 |
|
fproddivf.c |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 5 |
|
fproddivf.ne0 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ≠ 0 ) |
| 6 |
|
nfcv |
⊢ Ⅎ 𝑗 ( 𝐵 / 𝐶 ) |
| 7 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 |
| 8 |
|
nfcv |
⊢ Ⅎ 𝑘 / |
| 9 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 |
| 10 |
7 8 9
|
nfov |
⊢ Ⅎ 𝑘 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 / ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
| 11 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
| 12 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑗 → 𝐶 = ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
| 13 |
11 12
|
oveq12d |
⊢ ( 𝑘 = 𝑗 → ( 𝐵 / 𝐶 ) = ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 / ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) |
| 14 |
6 10 13
|
cbvprodi |
⊢ ∏ 𝑘 ∈ 𝐴 ( 𝐵 / 𝐶 ) = ∏ 𝑗 ∈ 𝐴 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 / ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 ( 𝐵 / 𝐶 ) = ∏ 𝑗 ∈ 𝐴 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 / ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) |
| 16 |
|
nfvd |
⊢ ( 𝜑 → Ⅎ 𝑘 𝑗 ∈ 𝐴 ) |
| 17 |
1 16
|
nfan1 |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) |
| 18 |
7
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ |
| 19 |
17 18
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 20 |
|
eleq1w |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴 ) ) |
| 21 |
20
|
anbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ) ) |
| 22 |
11
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 23 |
21 22
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) ) |
| 24 |
19 23 3
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 25 |
9
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ℂ |
| 26 |
17 25
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
| 27 |
12
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐶 ∈ ℂ ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) |
| 28 |
21 27
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) ) |
| 29 |
26 28 4
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
| 30 |
|
nfcv |
⊢ Ⅎ 𝑘 0 |
| 31 |
9 30
|
nfne |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ≠ 0 |
| 32 |
17 31
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ≠ 0 ) |
| 33 |
12
|
neeq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐶 ≠ 0 ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ≠ 0 ) ) |
| 34 |
21 33
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ≠ 0 ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ≠ 0 ) ) ) |
| 35 |
32 34 5
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ≠ 0 ) |
| 36 |
2 24 29 35
|
fproddiv |
⊢ ( 𝜑 → ∏ 𝑗 ∈ 𝐴 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 / ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) = ( ∏ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 / ∏ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) |
| 37 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐵 |
| 38 |
37 7 11
|
cbvprodi |
⊢ ∏ 𝑘 ∈ 𝐴 𝐵 = ∏ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 |
| 39 |
38
|
eqcomi |
⊢ ∏ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = ∏ 𝑘 ∈ 𝐴 𝐵 |
| 40 |
39
|
a1i |
⊢ ( 𝜑 → ∏ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = ∏ 𝑘 ∈ 𝐴 𝐵 ) |
| 41 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐶 |
| 42 |
12
|
equcoms |
⊢ ( 𝑗 = 𝑘 → 𝐶 = ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
| 43 |
42
|
eqcomd |
⊢ ( 𝑗 = 𝑘 → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 = 𝐶 ) |
| 44 |
9 41 43
|
cbvprodi |
⊢ ∏ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 = ∏ 𝑘 ∈ 𝐴 𝐶 |
| 45 |
44
|
a1i |
⊢ ( 𝜑 → ∏ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 = ∏ 𝑘 ∈ 𝐴 𝐶 ) |
| 46 |
40 45
|
oveq12d |
⊢ ( 𝜑 → ( ∏ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 / ∏ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) = ( ∏ 𝑘 ∈ 𝐴 𝐵 / ∏ 𝑘 ∈ 𝐴 𝐶 ) ) |
| 47 |
15 36 46
|
3eqtrd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 ( 𝐵 / 𝐶 ) = ( ∏ 𝑘 ∈ 𝐴 𝐵 / ∏ 𝑘 ∈ 𝐴 𝐶 ) ) |