| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodsplitf.kph |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
fprodsplitf.in |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = ∅ ) |
| 3 |
|
fprodsplitf.un |
⊢ ( 𝜑 → 𝑈 = ( 𝐴 ∪ 𝐵 ) ) |
| 4 |
|
fprodsplitf.fi |
⊢ ( 𝜑 → 𝑈 ∈ Fin ) |
| 5 |
|
fprodsplitf.c |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝐶 ∈ ℂ ) |
| 6 |
|
nfv |
⊢ Ⅎ 𝑘 𝑗 ∈ 𝑈 |
| 7 |
1 6
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝑈 ) |
| 8 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 |
| 9 |
8
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ℂ |
| 10 |
7 9
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑈 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
| 11 |
|
eleq1w |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝑈 ↔ 𝑗 ∈ 𝑈 ) ) |
| 12 |
11
|
anbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝑈 ) ) ) |
| 13 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑗 → 𝐶 = ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
| 14 |
13
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐶 ∈ ℂ ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) |
| 15 |
12 14
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝐶 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑈 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) ) |
| 16 |
10 15 5
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑈 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
| 17 |
2 3 4 16
|
fprodsplit |
⊢ ( 𝜑 → ∏ 𝑗 ∈ 𝑈 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 = ( ∏ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 · ∏ 𝑗 ∈ 𝐵 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) |
| 18 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐶 |
| 19 |
18 8 13
|
cbvprodi |
⊢ ∏ 𝑘 ∈ 𝑈 𝐶 = ∏ 𝑗 ∈ 𝑈 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 |
| 20 |
18 8 13
|
cbvprodi |
⊢ ∏ 𝑘 ∈ 𝐴 𝐶 = ∏ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 |
| 21 |
18 8 13
|
cbvprodi |
⊢ ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑗 ∈ 𝐵 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 |
| 22 |
20 21
|
oveq12i |
⊢ ( ∏ 𝑘 ∈ 𝐴 𝐶 · ∏ 𝑘 ∈ 𝐵 𝐶 ) = ( ∏ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 · ∏ 𝑗 ∈ 𝐵 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
| 23 |
17 19 22
|
3eqtr4g |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑈 𝐶 = ( ∏ 𝑘 ∈ 𝐴 𝐶 · ∏ 𝑘 ∈ 𝐵 𝐶 ) ) |