| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodsplitf.kph |
|- F/ k ph |
| 2 |
|
fprodsplitf.in |
|- ( ph -> ( A i^i B ) = (/) ) |
| 3 |
|
fprodsplitf.un |
|- ( ph -> U = ( A u. B ) ) |
| 4 |
|
fprodsplitf.fi |
|- ( ph -> U e. Fin ) |
| 5 |
|
fprodsplitf.c |
|- ( ( ph /\ k e. U ) -> C e. CC ) |
| 6 |
|
nfv |
|- F/ k j e. U |
| 7 |
1 6
|
nfan |
|- F/ k ( ph /\ j e. U ) |
| 8 |
|
nfcsb1v |
|- F/_ k [_ j / k ]_ C |
| 9 |
8
|
nfel1 |
|- F/ k [_ j / k ]_ C e. CC |
| 10 |
7 9
|
nfim |
|- F/ k ( ( ph /\ j e. U ) -> [_ j / k ]_ C e. CC ) |
| 11 |
|
eleq1w |
|- ( k = j -> ( k e. U <-> j e. U ) ) |
| 12 |
11
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. U ) <-> ( ph /\ j e. U ) ) ) |
| 13 |
|
csbeq1a |
|- ( k = j -> C = [_ j / k ]_ C ) |
| 14 |
13
|
eleq1d |
|- ( k = j -> ( C e. CC <-> [_ j / k ]_ C e. CC ) ) |
| 15 |
12 14
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. U ) -> C e. CC ) <-> ( ( ph /\ j e. U ) -> [_ j / k ]_ C e. CC ) ) ) |
| 16 |
10 15 5
|
chvarfv |
|- ( ( ph /\ j e. U ) -> [_ j / k ]_ C e. CC ) |
| 17 |
2 3 4 16
|
fprodsplit |
|- ( ph -> prod_ j e. U [_ j / k ]_ C = ( prod_ j e. A [_ j / k ]_ C x. prod_ j e. B [_ j / k ]_ C ) ) |
| 18 |
|
nfcv |
|- F/_ j C |
| 19 |
18 8 13
|
cbvprodi |
|- prod_ k e. U C = prod_ j e. U [_ j / k ]_ C |
| 20 |
18 8 13
|
cbvprodi |
|- prod_ k e. A C = prod_ j e. A [_ j / k ]_ C |
| 21 |
18 8 13
|
cbvprodi |
|- prod_ k e. B C = prod_ j e. B [_ j / k ]_ C |
| 22 |
20 21
|
oveq12i |
|- ( prod_ k e. A C x. prod_ k e. B C ) = ( prod_ j e. A [_ j / k ]_ C x. prod_ j e. B [_ j / k ]_ C ) |
| 23 |
17 19 22
|
3eqtr4g |
|- ( ph -> prod_ k e. U C = ( prod_ k e. A C x. prod_ k e. B C ) ) |