Metamath Proof Explorer


Theorem fprodsplitf

Description: Split a finite product into two parts. A version of fprodsplit using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fprodsplitf.kph kφ
fprodsplitf.in φAB=
fprodsplitf.un φU=AB
fprodsplitf.fi φUFin
fprodsplitf.c φkUC
Assertion fprodsplitf φkUC=kACkBC

Proof

Step Hyp Ref Expression
1 fprodsplitf.kph kφ
2 fprodsplitf.in φAB=
3 fprodsplitf.un φU=AB
4 fprodsplitf.fi φUFin
5 fprodsplitf.c φkUC
6 nfv kjU
7 1 6 nfan kφjU
8 nfcsb1v _kj/kC
9 8 nfel1 kj/kC
10 7 9 nfim kφjUj/kC
11 eleq1w k=jkUjU
12 11 anbi2d k=jφkUφjU
13 csbeq1a k=jC=j/kC
14 13 eleq1d k=jCj/kC
15 12 14 imbi12d k=jφkUCφjUj/kC
16 10 15 5 chvarfv φjUj/kC
17 2 3 4 16 fprodsplit φjUj/kC=jAj/kCjBj/kC
18 nfcv _jC
19 18 8 13 cbvprodi kUC=jUj/kC
20 18 8 13 cbvprodi kAC=jAj/kC
21 18 8 13 cbvprodi kBC=jBj/kC
22 20 21 oveq12i kACkBC=jAj/kCjBj/kC
23 17 19 22 3eqtr4g φkUC=kACkBC