Metamath Proof Explorer


Theorem fprodsplitsn

Description: Separate out a term in a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fprodsplitsn.ph k φ
fprodsplitsn.kd _ k D
fprodsplitsn.a φ A Fin
fprodsplitsn.b φ B V
fprodsplitsn.ba φ ¬ B A
fprodsplitsn.c φ k A C
fprodsplitsn.d k = B C = D
fprodsplitsn.dcn φ D
Assertion fprodsplitsn φ k A B C = k A C D

Proof

Step Hyp Ref Expression
1 fprodsplitsn.ph k φ
2 fprodsplitsn.kd _ k D
3 fprodsplitsn.a φ A Fin
4 fprodsplitsn.b φ B V
5 fprodsplitsn.ba φ ¬ B A
6 fprodsplitsn.c φ k A C
7 fprodsplitsn.d k = B C = D
8 fprodsplitsn.dcn φ D
9 disjsn A B = ¬ B A
10 5 9 sylibr φ A B =
11 eqidd φ A B = A B
12 snfi B Fin
13 unfi A Fin B Fin A B Fin
14 3 12 13 sylancl φ A B Fin
15 6 adantlr φ k A B k A C
16 elunnel1 k A B ¬ k A k B
17 elsni k B k = B
18 16 17 syl k A B ¬ k A k = B
19 18 adantll φ k A B ¬ k A k = B
20 19 7 syl φ k A B ¬ k A C = D
21 8 ad2antrr φ k A B ¬ k A D
22 20 21 eqeltrd φ k A B ¬ k A C
23 15 22 pm2.61dan φ k A B C
24 1 10 11 14 23 fprodsplitf φ k A B C = k A C k B C
25 2 7 prodsnf B V D k B C = D
26 4 8 25 syl2anc φ k B C = D
27 26 oveq2d φ k A C k B C = k A C D
28 24 27 eqtrd φ k A B C = k A C D