Description: Separate out a term in a finite product. A version of fprodsplit1 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fprodsplit1f.kph | |
|
fprodsplit1f.fk | |
||
fprodsplit1f.a | |
||
fprodsplit1f.b | |
||
fprodsplit1f.c | |
||
fprodsplit1f.d | |
||
Assertion | fprodsplit1f | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodsplit1f.kph | |
|
2 | fprodsplit1f.fk | |
|
3 | fprodsplit1f.a | |
|
4 | fprodsplit1f.b | |
|
5 | fprodsplit1f.c | |
|
6 | fprodsplit1f.d | |
|
7 | disjdif | |
|
8 | 7 | a1i | |
9 | 5 | snssd | |
10 | undif | |
|
11 | 9 10 | sylib | |
12 | 11 | eqcomd | |
13 | 1 8 12 3 4 | fprodsplitf | |
14 | 5 | ancli | |
15 | nfv | |
|
16 | 1 15 | nfan | |
17 | nfcsb1v | |
|
18 | 17 | nfel1 | |
19 | 16 18 | nfim | |
20 | eleq1 | |
|
21 | 20 | anbi2d | |
22 | csbeq1a | |
|
23 | 22 | eleq1d | |
24 | 21 23 | imbi12d | |
25 | 19 24 4 | vtoclg1f | |
26 | 5 14 25 | sylc | |
27 | prodsns | |
|
28 | 5 26 27 | syl2anc | |
29 | 1 2 5 6 | csbiedf | |
30 | 28 29 | eqtrd | |
31 | 30 | oveq1d | |
32 | 13 31 | eqtrd | |