Metamath Proof Explorer


Theorem fprodsplit1f

Description: Separate out a term in a finite product. A version of fprodsplit1 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fprodsplit1f.kph kφ
fprodsplit1f.fk φ_kD
fprodsplit1f.a φAFin
fprodsplit1f.b φkAB
fprodsplit1f.c φCA
fprodsplit1f.d φk=CB=D
Assertion fprodsplit1f φkAB=DkACB

Proof

Step Hyp Ref Expression
1 fprodsplit1f.kph kφ
2 fprodsplit1f.fk φ_kD
3 fprodsplit1f.a φAFin
4 fprodsplit1f.b φkAB
5 fprodsplit1f.c φCA
6 fprodsplit1f.d φk=CB=D
7 disjdif CAC=
8 7 a1i φCAC=
9 5 snssd φCA
10 undif CACAC=A
11 9 10 sylib φCAC=A
12 11 eqcomd φA=CAC
13 1 8 12 3 4 fprodsplitf φkAB=kCBkACB
14 5 ancli φφCA
15 nfv kCA
16 1 15 nfan kφCA
17 nfcsb1v _kC/kB
18 17 nfel1 kC/kB
19 16 18 nfim kφCAC/kB
20 eleq1 k=CkACA
21 20 anbi2d k=CφkAφCA
22 csbeq1a k=CB=C/kB
23 22 eleq1d k=CBC/kB
24 21 23 imbi12d k=CφkABφCAC/kB
25 19 24 4 vtoclg1f CAφCAC/kB
26 5 14 25 sylc φC/kB
27 prodsns CAC/kBkCB=C/kB
28 5 26 27 syl2anc φkCB=C/kB
29 1 2 5 6 csbiedf φC/kB=D
30 28 29 eqtrd φkCB=D
31 30 oveq1d φkCBkACB=DkACB
32 13 31 eqtrd φkAB=DkACB