Metamath Proof Explorer


Theorem fprodnn0cl

Description: Closure of a finite product of nonnegative integers. (Contributed by Scott Fenton, 14-Dec-2017)

Ref Expression
Hypotheses fprodcl.1
|- ( ph -> A e. Fin )
fprodnn0cl.2
|- ( ( ph /\ k e. A ) -> B e. NN0 )
Assertion fprodnn0cl
|- ( ph -> prod_ k e. A B e. NN0 )

Proof

Step Hyp Ref Expression
1 fprodcl.1
 |-  ( ph -> A e. Fin )
2 fprodnn0cl.2
 |-  ( ( ph /\ k e. A ) -> B e. NN0 )
3 nn0sscn
 |-  NN0 C_ CC
4 3 a1i
 |-  ( ph -> NN0 C_ CC )
5 nn0mulcl
 |-  ( ( x e. NN0 /\ y e. NN0 ) -> ( x x. y ) e. NN0 )
6 5 adantl
 |-  ( ( ph /\ ( x e. NN0 /\ y e. NN0 ) ) -> ( x x. y ) e. NN0 )
7 1nn0
 |-  1 e. NN0
8 7 a1i
 |-  ( ph -> 1 e. NN0 )
9 4 6 1 2 8 fprodcllem
 |-  ( ph -> prod_ k e. A B e. NN0 )