Metamath Proof Explorer


Theorem frege19

Description: A closed form of syl6 . Proposition 19 of Frege1879 p. 39. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege19
|- ( ( ph -> ( ps -> ch ) ) -> ( ( ch -> th ) -> ( ph -> ( ps -> th ) ) ) )

Proof

Step Hyp Ref Expression
1 frege9
 |-  ( ( ps -> ch ) -> ( ( ch -> th ) -> ( ps -> th ) ) )
2 frege18
 |-  ( ( ( ps -> ch ) -> ( ( ch -> th ) -> ( ps -> th ) ) ) -> ( ( ph -> ( ps -> ch ) ) -> ( ( ch -> th ) -> ( ph -> ( ps -> th ) ) ) ) )
3 1 2 ax-mp
 |-  ( ( ph -> ( ps -> ch ) ) -> ( ( ch -> th ) -> ( ph -> ( ps -> th ) ) ) )