Metamath Proof Explorer


Theorem frege33

Description: If ph or ps takes place, then ps or ph takes place. Identical to con1 . Proposition 33 of Frege1879 p. 44. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege33
|- ( ( -. ph -> ps ) -> ( -. ps -> ph ) )

Proof

Step Hyp Ref Expression
1 ax-frege28
 |-  ( ( -. ph -> ps ) -> ( -. ps -> -. -. ph ) )
2 frege32
 |-  ( ( ( -. ph -> ps ) -> ( -. ps -> -. -. ph ) ) -> ( ( -. ph -> ps ) -> ( -. ps -> ph ) ) )
3 1 2 ax-mp
 |-  ( ( -. ph -> ps ) -> ( -. ps -> ph ) )