Metamath Proof Explorer


Theorem frege49

Description: Closed form of deduction with disjunction. Proposition 49 of Frege1879 p. 49. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege49
|- ( ( -. ph -> ps ) -> ( ( ph -> ch ) -> ( ( ps -> ch ) -> ch ) ) )

Proof

Step Hyp Ref Expression
1 frege47
 |-  ( ( -. ph -> ps ) -> ( ( ps -> ch ) -> ( ( ph -> ch ) -> ch ) ) )
2 frege12
 |-  ( ( ( -. ph -> ps ) -> ( ( ps -> ch ) -> ( ( ph -> ch ) -> ch ) ) ) -> ( ( -. ph -> ps ) -> ( ( ph -> ch ) -> ( ( ps -> ch ) -> ch ) ) ) )
3 1 2 ax-mp
 |-  ( ( -. ph -> ps ) -> ( ( ph -> ch ) -> ( ( ps -> ch ) -> ch ) ) )