Step |
Hyp |
Ref |
Expression |
1 |
|
rdgfun |
|- Fun rec ( F , A ) |
2 |
|
funres |
|- ( Fun rec ( F , A ) -> Fun ( rec ( F , A ) |` _om ) ) |
3 |
1 2
|
ax-mp |
|- Fun ( rec ( F , A ) |` _om ) |
4 |
|
dmres |
|- dom ( rec ( F , A ) |` _om ) = ( _om i^i dom rec ( F , A ) ) |
5 |
|
rdgdmlim |
|- Lim dom rec ( F , A ) |
6 |
|
limomss |
|- ( Lim dom rec ( F , A ) -> _om C_ dom rec ( F , A ) ) |
7 |
5 6
|
ax-mp |
|- _om C_ dom rec ( F , A ) |
8 |
|
df-ss |
|- ( _om C_ dom rec ( F , A ) <-> ( _om i^i dom rec ( F , A ) ) = _om ) |
9 |
7 8
|
mpbi |
|- ( _om i^i dom rec ( F , A ) ) = _om |
10 |
4 9
|
eqtri |
|- dom ( rec ( F , A ) |` _om ) = _om |
11 |
|
df-fn |
|- ( ( rec ( F , A ) |` _om ) Fn _om <-> ( Fun ( rec ( F , A ) |` _om ) /\ dom ( rec ( F , A ) |` _om ) = _om ) ) |
12 |
3 10 11
|
mpbir2an |
|- ( rec ( F , A ) |` _om ) Fn _om |