Description: Two ways to write the support of a function on NN0 . (Contributed by Mario Carneiro, 29-Dec-2014) (Revised by AV, 7-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | frnnn0supp | |- ( ( I e. V /\ F : I --> NN0 ) -> ( F supp 0 ) = ( `' F " NN ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex | |- 0 e. _V |
|
2 | frnsuppeq | |- ( ( I e. V /\ 0 e. _V ) -> ( F : I --> NN0 -> ( F supp 0 ) = ( `' F " ( NN0 \ { 0 } ) ) ) ) |
|
3 | 1 2 | mpan2 | |- ( I e. V -> ( F : I --> NN0 -> ( F supp 0 ) = ( `' F " ( NN0 \ { 0 } ) ) ) ) |
4 | 3 | imp | |- ( ( I e. V /\ F : I --> NN0 ) -> ( F supp 0 ) = ( `' F " ( NN0 \ { 0 } ) ) ) |
5 | dfn2 | |- NN = ( NN0 \ { 0 } ) |
|
6 | 5 | imaeq2i | |- ( `' F " NN ) = ( `' F " ( NN0 \ { 0 } ) ) |
7 | 4 6 | eqtr4di | |- ( ( I e. V /\ F : I --> NN0 ) -> ( F supp 0 ) = ( `' F " NN ) ) |