Step |
Hyp |
Ref |
Expression |
1 |
|
fex |
|- ( ( F : I --> S /\ I e. V ) -> F e. _V ) |
2 |
1
|
expcom |
|- ( I e. V -> ( F : I --> S -> F e. _V ) ) |
3 |
2
|
adantr |
|- ( ( I e. V /\ Z e. W ) -> ( F : I --> S -> F e. _V ) ) |
4 |
3
|
imp |
|- ( ( ( I e. V /\ Z e. W ) /\ F : I --> S ) -> F e. _V ) |
5 |
|
simplr |
|- ( ( ( I e. V /\ Z e. W ) /\ F : I --> S ) -> Z e. W ) |
6 |
|
suppimacnv |
|- ( ( F e. _V /\ Z e. W ) -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) |
7 |
4 5 6
|
syl2anc |
|- ( ( ( I e. V /\ Z e. W ) /\ F : I --> S ) -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) |
8 |
|
ffun |
|- ( F : I --> S -> Fun F ) |
9 |
|
inpreima |
|- ( Fun F -> ( `' F " ( S i^i ( _V \ { Z } ) ) ) = ( ( `' F " S ) i^i ( `' F " ( _V \ { Z } ) ) ) ) |
10 |
8 9
|
syl |
|- ( F : I --> S -> ( `' F " ( S i^i ( _V \ { Z } ) ) ) = ( ( `' F " S ) i^i ( `' F " ( _V \ { Z } ) ) ) ) |
11 |
|
cnvimass |
|- ( `' F " ( _V \ { Z } ) ) C_ dom F |
12 |
|
fdm |
|- ( F : I --> S -> dom F = I ) |
13 |
|
fimacnv |
|- ( F : I --> S -> ( `' F " S ) = I ) |
14 |
12 13
|
eqtr4d |
|- ( F : I --> S -> dom F = ( `' F " S ) ) |
15 |
11 14
|
sseqtrid |
|- ( F : I --> S -> ( `' F " ( _V \ { Z } ) ) C_ ( `' F " S ) ) |
16 |
|
sseqin2 |
|- ( ( `' F " ( _V \ { Z } ) ) C_ ( `' F " S ) <-> ( ( `' F " S ) i^i ( `' F " ( _V \ { Z } ) ) ) = ( `' F " ( _V \ { Z } ) ) ) |
17 |
15 16
|
sylib |
|- ( F : I --> S -> ( ( `' F " S ) i^i ( `' F " ( _V \ { Z } ) ) ) = ( `' F " ( _V \ { Z } ) ) ) |
18 |
10 17
|
eqtrd |
|- ( F : I --> S -> ( `' F " ( S i^i ( _V \ { Z } ) ) ) = ( `' F " ( _V \ { Z } ) ) ) |
19 |
|
invdif |
|- ( S i^i ( _V \ { Z } ) ) = ( S \ { Z } ) |
20 |
19
|
imaeq2i |
|- ( `' F " ( S i^i ( _V \ { Z } ) ) ) = ( `' F " ( S \ { Z } ) ) |
21 |
18 20
|
eqtr3di |
|- ( F : I --> S -> ( `' F " ( _V \ { Z } ) ) = ( `' F " ( S \ { Z } ) ) ) |
22 |
21
|
adantl |
|- ( ( ( I e. V /\ Z e. W ) /\ F : I --> S ) -> ( `' F " ( _V \ { Z } ) ) = ( `' F " ( S \ { Z } ) ) ) |
23 |
7 22
|
eqtrd |
|- ( ( ( I e. V /\ Z e. W ) /\ F : I --> S ) -> ( F supp Z ) = ( `' F " ( S \ { Z } ) ) ) |
24 |
23
|
ex |
|- ( ( I e. V /\ Z e. W ) -> ( F : I --> S -> ( F supp Z ) = ( `' F " ( S \ { Z } ) ) ) ) |