Step |
Hyp |
Ref |
Expression |
1 |
|
suppimacnv |
|- ( ( F e. V /\ Z e. W ) -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) |
2 |
|
ffun |
|- ( F : I --> S -> Fun F ) |
3 |
|
inpreima |
|- ( Fun F -> ( `' F " ( S i^i ( _V \ { Z } ) ) ) = ( ( `' F " S ) i^i ( `' F " ( _V \ { Z } ) ) ) ) |
4 |
2 3
|
syl |
|- ( F : I --> S -> ( `' F " ( S i^i ( _V \ { Z } ) ) ) = ( ( `' F " S ) i^i ( `' F " ( _V \ { Z } ) ) ) ) |
5 |
|
cnvimass |
|- ( `' F " ( _V \ { Z } ) ) C_ dom F |
6 |
|
fdm |
|- ( F : I --> S -> dom F = I ) |
7 |
|
fimacnv |
|- ( F : I --> S -> ( `' F " S ) = I ) |
8 |
6 7
|
eqtr4d |
|- ( F : I --> S -> dom F = ( `' F " S ) ) |
9 |
5 8
|
sseqtrid |
|- ( F : I --> S -> ( `' F " ( _V \ { Z } ) ) C_ ( `' F " S ) ) |
10 |
|
sseqin2 |
|- ( ( `' F " ( _V \ { Z } ) ) C_ ( `' F " S ) <-> ( ( `' F " S ) i^i ( `' F " ( _V \ { Z } ) ) ) = ( `' F " ( _V \ { Z } ) ) ) |
11 |
9 10
|
sylib |
|- ( F : I --> S -> ( ( `' F " S ) i^i ( `' F " ( _V \ { Z } ) ) ) = ( `' F " ( _V \ { Z } ) ) ) |
12 |
4 11
|
eqtrd |
|- ( F : I --> S -> ( `' F " ( S i^i ( _V \ { Z } ) ) ) = ( `' F " ( _V \ { Z } ) ) ) |
13 |
|
invdif |
|- ( S i^i ( _V \ { Z } ) ) = ( S \ { Z } ) |
14 |
13
|
imaeq2i |
|- ( `' F " ( S i^i ( _V \ { Z } ) ) ) = ( `' F " ( S \ { Z } ) ) |
15 |
12 14
|
eqtr3di |
|- ( F : I --> S -> ( `' F " ( _V \ { Z } ) ) = ( `' F " ( S \ { Z } ) ) ) |
16 |
1 15
|
sylan9eq |
|- ( ( ( F e. V /\ Z e. W ) /\ F : I --> S ) -> ( F supp Z ) = ( `' F " ( S \ { Z } ) ) ) |
17 |
16
|
ex |
|- ( ( F e. V /\ Z e. W ) -> ( F : I --> S -> ( F supp Z ) = ( `' F " ( S \ { Z } ) ) ) ) |