Metamath Proof Explorer


Theorem frnsuppeqg

Description: Version of frnsuppeq avoiding ax-rep by assuming F is a set rather than its domain I . (Contributed by SN, 30-Jul-2024)

Ref Expression
Assertion frnsuppeqg F V Z W F : I S F supp Z = F -1 S Z

Proof

Step Hyp Ref Expression
1 suppimacnv F V Z W F supp Z = F -1 V Z
2 invdif S V Z = S Z
3 2 imaeq2i F -1 S V Z = F -1 S Z
4 ffun F : I S Fun F
5 inpreima Fun F F -1 S V Z = F -1 S F -1 V Z
6 4 5 syl F : I S F -1 S V Z = F -1 S F -1 V Z
7 cnvimass F -1 V Z dom F
8 fdm F : I S dom F = I
9 fimacnv F : I S F -1 S = I
10 8 9 eqtr4d F : I S dom F = F -1 S
11 7 10 sseqtrid F : I S F -1 V Z F -1 S
12 sseqin2 F -1 V Z F -1 S F -1 S F -1 V Z = F -1 V Z
13 11 12 sylib F : I S F -1 S F -1 V Z = F -1 V Z
14 6 13 eqtrd F : I S F -1 S V Z = F -1 V Z
15 3 14 syl5reqr F : I S F -1 V Z = F -1 S Z
16 1 15 sylan9eq F V Z W F : I S F supp Z = F -1 S Z
17 16 ex F V Z W F : I S F supp Z = F -1 S Z