Metamath Proof Explorer


Theorem frnsuppeqg

Description: Version of frnsuppeq avoiding ax-rep by assuming F is a set rather than its domain I . (Contributed by SN, 30-Jul-2024)

Ref Expression
Assertion frnsuppeqg F V Z W F : I S F supp Z = F -1 S Z

Proof

Step Hyp Ref Expression
1 suppimacnv F V Z W F supp Z = F -1 V Z
2 ffun F : I S Fun F
3 inpreima Fun F F -1 S V Z = F -1 S F -1 V Z
4 2 3 syl F : I S F -1 S V Z = F -1 S F -1 V Z
5 cnvimass F -1 V Z dom F
6 fdm F : I S dom F = I
7 fimacnv F : I S F -1 S = I
8 6 7 eqtr4d F : I S dom F = F -1 S
9 5 8 sseqtrid F : I S F -1 V Z F -1 S
10 sseqin2 F -1 V Z F -1 S F -1 S F -1 V Z = F -1 V Z
11 9 10 sylib F : I S F -1 S F -1 V Z = F -1 V Z
12 4 11 eqtrd F : I S F -1 S V Z = F -1 V Z
13 invdif S V Z = S Z
14 13 imaeq2i F -1 S V Z = F -1 S Z
15 12 14 eqtr3di F : I S F -1 V Z = F -1 S Z
16 1 15 sylan9eq F V Z W F : I S F supp Z = F -1 S Z
17 16 ex F V Z W F : I S F supp Z = F -1 S Z