Description: Show without using the axiom of replacement that the domain of the well-founded recursion generator is a subclass of A . (Contributed by Scott Fenton, 18-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | frrrel.1 | |- F = frecs ( R , A , G ) |
|
Assertion | frrdmss | |- dom F C_ A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frrrel.1 | |- F = frecs ( R , A , G ) |
|
2 | eqid | |- { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
|
3 | 2 1 | frrlem7 | |- dom F C_ A |