Step |
Hyp |
Ref |
Expression |
1 |
|
frrlem5.1 |
|- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
2 |
|
frrlem5.2 |
|- F = frecs ( R , A , G ) |
3 |
1 2
|
frrlem5 |
|- F = U. B |
4 |
3
|
dmeqi |
|- dom F = dom U. B |
5 |
|
dmuni |
|- dom U. B = U_ g e. B dom g |
6 |
4 5
|
eqtri |
|- dom F = U_ g e. B dom g |
7 |
6
|
sseq1i |
|- ( dom F C_ A <-> U_ g e. B dom g C_ A ) |
8 |
|
iunss |
|- ( U_ g e. B dom g C_ A <-> A. g e. B dom g C_ A ) |
9 |
7 8
|
bitri |
|- ( dom F C_ A <-> A. g e. B dom g C_ A ) |
10 |
1
|
frrlem3 |
|- ( g e. B -> dom g C_ A ) |
11 |
9 10
|
mprgbir |
|- dom F C_ A |